84 resultados para Biogenic particles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss a novel procedure for constructing clusters of bound particles in the case of a quantum integrable derivative delta-function Bose gas in one dimension. It is shown that clusters of bound particles can be constructed for this Bose gas for some special values of the coupling constant, by taking the quasi-momenta associated with the corresponding Bethe state to be equidistant points on a single circle in the complex momentum plane. We also establish a connection between these special values of the coupling constant and some fractions belonging to the Farey sequences in number theory. This connection leads to a classification of the clusters of bound particles associated with the derivative delta-function Bose gas and allows us to study various properties of these clusters like their size and their stability under the variation of the coupling constant. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present research focused on determining the effect of hydroxyapatite-20 wt% mullite (H20M) particle eluates on apoptosis and differentiation of human fetal osteoblast (hFOB) cells. The H20M particles (257 +/- 37 nm) were prepared, starting with the production of a nanocomposite using a unique route of spark plasma sintering, followed by a repeated grinding-cryo treatment and elution process. Tetrazolium based cytotoxicity assay results showed a time-and dose-dependent effect of H20M particle eluates on hFOB cytotoxicity. In particular, the results revealed statistically reduced cell viability after hFOB were exposed to the above 10% H20M (257 +/- 37 nm) eluates for 48 h. The apoptotic cell death triggered by H20M treatment was proven by the analysis of molecular markers of apoptosis, that is, the Bcl-2 family of genes. hFOB expression of Bcl-xL and Bcl-xS significantly increased 25.6- and 25.2-fold for 50% of H20M concentrations, respectively. The ratio of Bcl-xL/Bax (4.01) decreased 2-fold for hFOB exposed to 100% of H20M eluates than that for 10% H20M eluate (7.94) treated hFOB cells. On the other hand, the Bcl-xS/Bax ratio for the 10% H20M eluate was 4.15-fold, whereas for 100% H20M eluates, it was 11.55-fold. Specifically, the anti-apoptotic effect of the H20M particle eluates was corroborated by the up-regulation of bone cell differentiation marker genes such as, collagen type I, cbfa, and osteocalcin. In summary, the present work clearly demonstrated that H20M submicron to nanometer composite particle eluates have a minimal effect on hFOB apoptosis and can even up-regulate the expression of bone cell markers at the molecular level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of the damage mechanisms involved in the wear process demands the finer scale characterization of the surface, as well as the subsurface region of the wear scar region, and to this end, this article discusses the results obtained with Cu-10 wt% Pb-based metallic nanocomposites using a host of characterization techniques, including transmission electron microscopy and ion milling microscopy. Apart from finer scale characterization to understand deformation and cracking during the wear process, X-ray photoelectron spectroscopy analysis of wear debris confirms the occurrence of oxidation of Pb phase to Pb3O4. In order to understand the role of oxides on friction and wear, sliding wear tests in argon were also carried out and such tests did not result in the formation of any tribo-oxides, as confirmed using electron probe microanalysis. Conclusively, oxidative wear is attributed as the dominant wear mechanism in ambient conditions for Cu-10 wt% Pb composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniform La0.6Sr0.4MnO3 (LSMO) nanotubes of an average diameter 180 nm were synthesized by a modified sol-gel method employing nanochannel porous anodic alumina templates. The nanotubes were characterized chemically and structurally by XRD, SEM, EDX, and TEM. Postannealed (700 degrees C for 1 h hour) nanotubes were found to be polycrystalline from XRD and SAED studies. To get further insight into the nanotube structure, HRTEM studies were done, which revealed that obtained LSMO nanotubes were structurally constituted with nanoparticles of 3-12 nm size. These constituent nanoparticles were randomly aligned and self-knitted to build the nanotube wall. Investigation of magnetic properties at this structured nanoscale revealed remarkable irreversibility between the zero field cooling (ZFC) and field cooling (FC) magnetization curves accompanied with a peak in the ZFC curve indicating spin-glass-like behavior. Structural defects and compositional variations at surfaces and grain-boundaries of constituent nanoparticles might be responsible for this anomalous magnetic behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-sized bimetallic dispersoids consisting of (Pb) and beta-(Sn) phases of eutectic composition (Pb26.1Sn73.9) embedded in aluminum and Al-Cu-Fe quasicrystalline matrices have been prepared by rapid solidification processing. The two phases, face centered cubic (Pb) and body center tetragonal, beta-(Sn) solid solution co-exist in all the embedded nanoparticles at room temperature. The phases bear crystallographic orientation relationship with the matrix. In situ TEM study has been carried out for the alloy particles to study the melting and the solidification behavior. The detailed microscopic observations indicate formation of a single-phase metastable fcc (Pb) in the nano-particles prior to the melting during heating. Solidification of these particles begins with nucleation of fcc (Pb), which phase separates into fcc (Pb) and beta-(Sn) lamellae in the solid state. In situ X-ray diffraction study is carried out to obtain lattice parameter of metastable fcc (Pb) and thereby an estimate of amount of Sn dissolved in the metastable (Pb) prior to the melting. The results are discussed in terms of a metastable phase diagram between fcc Pb and fcc Sn and invoking the size effect on the metastable phase diagram. The size factor is found to play a critical role in deciding the pathway of phase transformation as well as the extension of solid solubility of Sn in fcc (Pb) in the nano-particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tobacco streak virus (TSV), a member of the genus Ilarvirus (family Bromoviridae), has a tripartite genome and forms quasi-isometric virions. All three viral capsids, encapsidating RNA 1, RNA 2 or RNA 3 and subgenomic RNA 4, are constituted of a single species of coat protein (CP). Formation of virus-like particles (VLPs) could be observed when the TSV CP gene was cloned and the recombinant CP (rCP) was expressed in E. coli. TSV VLPs were found to be stabilized by Zn2+ ions and could be disassembled in the presence of 500 mM CaCl2. Mutational analysis corroborated previous studies that showed that an N-terminal arginine-rich motif was crucial for RNA binding; however, the results presented here demonstrate that the presence of RNA is not a prerequisite for assembly of TSV VLPs. Instead, the N-terminal region containing the zinc finger domain preceding the arginine-rich motif is essential for assembly of these VLPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper addresses the effect of particle size on tar generation in a fixed bed gasification system. Pyrolysis, a diffusion limited process, depends on the heating rate and the surface area of the particle influencing the release of the volatile fraction leaving behind residual char. The flaming time has been estimated for different biomass samples. It is found that the flaming time for wood flakes is almost one fourth than that of coconut shells for same equivalent diameter fuel samples. The particle density of the coconut shell is more than twice that of wood spheres, and almost four times compared with wood flakes; having a significant influence on the flaming time. The ratio of the particle surface area to that of an equivalent diameter is nearly two times higher for flakes compared with wood pieces. Accounting for the density effect, on normalizing with density of the particle, the flaming rate is double in the case of wood flakes or coconut shells compared with the wood sphere for an equivalent diameter. This is due to increased surface area per unit volume of the particle. Experiments are conducted on estimation of tar content in the raw gas for wood flakes and standard wood pieces. It is observed that the tar level in the raw gas is about 80% higher in the case of wood flakes compared with wood pieces. The analysis suggests that the time for pyrolysis is lower with a higher surface area particle and is subjected to fast pyrolysis process resulting in higher tar fraction with low char yield. Increased residence time with staged air flow has a better control on residence time and lower tar in the raw gas. (C) 2014 International Energy Initiative. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reverse osmosis (RO) membranes have been used extensively in water desalination plants, waste water treatment in industries, agricultural farms and drinking water production applications. The objective of this work is to impart antibacterial and antifungal activities to commercially available RO membrane used in water purification systems by incorporating biogenic silver nanoparticles (AgNPs) synthesized using Rosa indica wichuriana hybrid leaf extract. The morphology and surface topography of uncoated and AgNPs-coated RO membrane were studied using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Elemental composition of the AgNPs-coated RO membrane was analyzed by energy-dispersive X-ray spectroscopy (EDAX). The functional groups were identified by Fourier Transform Infrared spectroscopy (FT-IR). Hydrophilicity of the uncoated and AgNPs-coated RO membrane was analyzed using water contact angle measurements. The thermal properties were studied by thermogravimetric analysis (TGA). The AgNPs incorporated RO membrane exhibited good antibacterial and antifungal activities against pathogenic bacterial strains such as E. coli, S. aureus, M. luteus, K. pneumoniae, and P. aeruginosa and fungal strains such as Candida tropicalis, C. krusei, C. glabrata, and C. albicans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report inelastic light scattering experiments on superconductor Ce0.6Y0.4FeAsO0.8F0.2 from 4K to 300K covering the superconducting transition temperature T-c similar to 48.6K. A strong evidence of the superconductivity induced phonon renormalization for the A(1g) phonon mode near 150cm(-1) associated with the Ce/Y vibrations is observed as reflected in the anomalous red-shift and decrease in the linewidth below T-c. Invoking the coupling of this mode with the superconducting gap, the superconducting gap (2 Delta) at zero temperature is estimated to be similar to 20meV i.e the ratio 2 Delta(0)/k(B)T(c) is similar to 5, suggesting Ce0.6Y0.4FeAsO0.8F0.2 to belong to the class of strong coupling superconductors. In addition, the mode near 430cm(-1) associated with Ce3+ crystal field excitation also shows anomalous increase in its linewidth below T-c suggesting strong coupling between crystal field excitation and the superconducting quasi-particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Cu2+-selective metallo(hydro) gelation of a p-pyridyl ended oligophenylenevinylene system is reported over its respective meta- and ortho-regioisomers. The metallogel formed via the self-assembly of the nanoscale-metal-organic particles is injectable and also shows multi-stimuli responsiveness, including thixotropy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress states in Si particles of cast Al-Si based alloys depend on its morphology and the heat treatment given to the alloy. The Si particles fracture less on modification and fracture more in the heat treated condition. An attempt has been made in this work to study the effect of heat treatment and Si modification on the stress states of the particles. Such understanding will be valuable for predicting the ductility of the alloy. The stress states of Si particles are estimated by Raman technique and compared with the microstructure-based FEM simulations. Combination of Electron Back-Scattered Diffraction (EBSD) and frequency shift, polarized micro-Raman technique is applied to determine the stress states in Si particles with (111) orientations. Stress states are measured in the as-received state and under uniaxial compression. The residual stress, the stress in the elastic-plastic regime and the stress which causes fracture of the particles is estimated by Raman technique. FEM study demonstrates that the stress distribution is uniform in modified Si, whereas the unmodified Si shows higher and more complex stress states. The onset of plastic flow is observed at sharp corners of the particles and is followed by localization of strain between particles. Clustering of particles generates more inhomogeneous plastic strain in the matrix. Particle stress estimated by Raman technique is in agreement with FEM calculations. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study combines field and satellite observations to investigate how hydrographical transformations influence phytoplankton size structure in the southern Bay of Bengal during the peak Southwest Monsoon/Summer Monsoon (July-August). The intrusion of the Summer Monsoon Current (SMC) into the Bay of Bengal and associated changes in sea surface chemistry, traceable eastward up to 90 degrees E along 8 degrees N, seems to influence biology of the region significantly. Both in situ and satellite (MODIS) data revealed low surface chlorophyll except in the area influenced by the SMC During the study period, two well-developed cydonic eddies (north) and an anti-cyclonic eddy (south), closely linked to the main eastward flow of the SMC, were sampled. Considering the capping effect of the low-saline surface water that is characteristic of the Bay of Bengal, the impact of the cyclonic eddy, estimated in terms of enhanced nutrients and chlorophyll, was mostly restricted to the subsurface waters (below 20 m depth). Conversely, the anti-cyclonic eddy aided by the SMC was characterized by considerably higher nutrient concentration and chlorophyll in the upper water column (upper 60 m), which was contrary to the general characteristic of such eddies. Albeit smaller phytoplankton predominated the southern Bay of Bengal (60-95% of the total chlorophyll), the contribution of large phytoplankton was double in the regions influenced by the SMC and associated eddies. Multivariate analysis revealed the extent to which SMC-associated eddies spatially influence phytoplankton community structure. The study presents the first direct quantification of the size structure of phytoplankton from the southern Bay of Bengal and demonstrates that the SMC-associated hydrographical ramifications significantly increase the phytoplankton biomass contributed by larger phytoplankton and thereby influence the vertical opal and organic carbon flux in the region. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flame particles are surface points that always remain embedded on, by comoving with a given iso-scalar surface within a flame. Tracking flame particles allow us to study the fate of propagating surface locations uniquely identified throughout their evolution with time. In this work, using Direct Numerical Simulations we study the finite lifetime of such flame particles residing on iso-temperature surfaces of statistically planar H-2-air flames interacting with near-isotropic turbulence. We find that individual flame particles as well as their ensemble, experience progressively increasing tangential straining rate (K-t) and increasing negative curvature (kappa) near the end of their lifetime to finally get annihilated. By studying two different turbulent flow conditions, flame particle tracking shows that such tendency of local flame surfaces to be strained and cusped towards pinch-off from the main surface is a rather generic feature, independent of initial conditions, locations and ambient turbulence intensity levels. The evolution of the alignments between the flame surface normals and the principal components of the local straining rates are also tracked. We find that the surface normals initially aligned with the most extensive principal strain rate components, rotate near the end of flame particles' lifetime to enable preferential alignment between the surface tangent and the most extensive principal strain rate component. This could explain the persistently increasing tangential strain rate, sharp negative curvature formation and eventual detachment. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a simulation study of loose cylindrically shaped particles packed within a copper plate and aluminum fins. The model presented solves coupled heat and mass transfer equations using the finite volume method based on ANSY S FLUENT medium. Three different arrangements of cylindrical particles are considered. The model is validated with experimental data. It is found that the arrangements which represented monolayer configurations are only marginally better in heat transfer and uptake efficiency than the tri-layer configuration in the presence of fins. However, there is an appreciable difference in the uptake curve between monoand tri-layer configurations in the absence of fins. Finally, it is found that the fin pitch also plays an important role in determining the time constant for the adsorber design.