102 resultados para Best algebraic approximation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of scheduling a wireless channel among multiple users. A slot is given to a user with a highest metric (e.g., channel gain) in that slot. The scheduler may not know the channel states of all the users at the beginning of each slot. In this scenario opportunistic splitting is an attractive solution. However this algorithm requires that the metrics of different users form independent, identically distributed (iid) sequences with same distribution and that their distribution and number be known to the scheduler. This limits the usefulness of opportunistic splitting. In this paper we develop a parametric version of this algorithm. The optimal parameters of the algorithm are learnt online through a stochastic approximation scheme. Our algorithm does not require the metrics of different users to have the same distribution. The statistics of these metrics and the number of users can be unknown and also vary with time. We prove the convergence of the algorithm and show its utility by scheduling the channel to maximize its throughput while satisfying some fairness and/or quality of service constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data. (C) 2011 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the assumptions of the van der Waals and Platteeuw theory for gas hydrates is that the host water lattice is rigid and not distorted by the presence of guest molecules. In this work, we study the effect of this approximation on the triple-point lines of the gas hydrates. We calculate the triple-point lines of methane and ethane hydrates via Monte Carlo molecular simulations and compare the simulation results with the predictions of van der Waals and Platteeuw theory. Our study shows that even if the exact intermolecular potential between the guest molecules and water is known, the dissociation temperatures predicted by the theory are significantly higher. This has serious implications to the modeling of gas hydrate thermodynamics, and in spite of the several impressive efforts made toward obtaining an accurate description of intermolecular interactions in gas hydrates, the theory will suffer from the problem of robustness if the issue of movement of water molecules is not adequately addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many wireless applications, it is highly desirable to have a fast mechanism to resolve or select the packet from the user with the highest priority. Furthermore, individual priorities are often known only locally at the users. In this paper we introduce an extremely fast, local-information-based multiple access algorithm that selects the best node in 1.8 to 2.1 slots,which is much lower than the 2.43 slot average achieved by the best algorithm known to date. The algorithm, which we call Variable Power Multiple Access Selection (VP-MAS), uses the local channel state information from the accessing nodes to the receiver, and maps the priorities into the receive power.It is inherently distributed and scales well with the number of users. We show that mapping onto a discrete set of receive power levels is optimal, and provide a complete characterization for it. The power levels are chosen to exploit packet capture that inherently occurs in a wireless physical layer. The VP-MAS algorithm adjusts the expected number of users that contend in each step and their respective transmission powers, depending on whether previous transmission attempts resulted in capture,idle channel, or collision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 4ÃÂ4 discrete cosine transform is one of the most important building blocks for the emerging video coding standard, viz. H.264. The conventional implementation does some approximation to the transform matrix elements to facilitate integer arithmetic, for which hardware is suitably prepared. Though the transform coding does not involve any multiplications, quantization process requires sixteen 16-bit multiplications. The algorithm used here eliminates the process of approximation in transform coding and multiplication in the quantization process, by usage of algebraic integer coding. We propose an area-efficient implementation of the transform and quantization blocks based on the algebraic integer coding. The designs were synthesized with 90 nm TSMC CMOS technology and were also implemented on a Xilinx FPGA. The gate counts and throughput achievable in this case are 7000 and 125 Msamples/sec.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions.We use the force and moment transformation matrices separately,and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation has been applied to a class of Stewart platform manipulators. We obtain multi-parameter families of isotropic manipulator analytically. In addition to computing the isotropic configurations of an existing manipulator,we demonstrate a procedure for designing the manipulator for isotropy at a given configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present two efficient discrete parameter simulation optimization (DPSO) algorithms for the long-run average cost objective. One of these algorithms uses the smoothed functional approximation (SFA) procedure, while the other is based on simultaneous perturbation stochastic approximation (SPSA). The use of SFA for DPSO had not been proposed previously in the literature. Further, both algorithms adopt an interesting technique of random projections that we present here for the first time. We give a proof of convergence of our algorithms. Next, we present detailed numerical experiments on a problem of admission control with dependent service times. We consider two different settings involving parameter sets that have moderate and large sizes, respectively. On the first setting, we also show performance comparisons with the well-studied optimal computing budget allocation (OCBA) algorithm and also the equal allocation algorithm. Note to Practitioners-Even though SPSA and SFA have been devised in the literature for continuous optimization problems, our results indicate that they can be powerful techniques even when they are adapted to discrete optimization settings. OCBA is widely recognized as one of the most powerful methods for discrete optimization when the parameter sets are of small or moderate size. On a setting involving a parameter set of size 100, we observe that when the computing budget is small, both SPSA and OCBA show similar performance and are better in comparison to SFA, however, as the computing budget is increased, SPSA and SFA show better performance than OCBA. Both our algorithms also show good performance when the parameter set has a size of 10(8). SFA is seen to show the best overall performance. Unlike most other DPSO algorithms in the literature, an advantage with our algorithms is that they are easily implementable regardless of the size of the parameter sets and show good performance in both scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of finding optimal parameterized feedback policies for dynamic bandwidth allocation in communication networks is studied. We consider a queueing model with two queues to which traffic from different competing flows arrive. The queue length at the buffers is observed every T instants of time, on the basis of which a decision on the amount of bandwidth to be allocated to each buffer for the next T instants is made. We consider two different classes of multilevel closed-loop feedback policies for the system and use a two-timescale simultaneous perturbation stochastic approximation (SPSA) algorithm to find optimal policies within each prescribed class. We study the performance of the proposed algorithm on a numerical setting and show performance comparisons of the two optimal multilevel closedloop policies with optimal open loop policies. We observe that closed loop policies of Class B that tune parameters for both the queues and do not have the constraint that the entire bandwidth be used at each instant exhibit the best results overall as they offer greater flexibility in parameter tuning. Index Terms — Resource allocation, dynamic bandwidth allocation in communication networks, two-timescale SPSA algorithm, optimal parameterized policies. I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose for the first time two reinforcement learning algorithms with function approximation for average cost adaptive control of traffic lights. One of these algorithms is a version of Q-learning with function approximation while the other is a policy gradient actor-critic algorithm that incorporates multi-timescale stochastic approximation. We show performance comparisons on various network settings of these algorithms with a range of fixed timing algorithms, as well as a Q-learning algorithm with full state representation that we also implement. We observe that whereas (as expected) on a two-junction corridor, the full state representation algorithm shows the best results, this algorithm is not implementable on larger road networks. The algorithm PG-AC-TLC that we propose is seen to show the best overall performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major challenge in wireless communications is overcoming the deleterious effects of fading, a phenomenon largely responsible for the seemingly inevitable dropped call. Multiple-antennas communication systems, commonly referred to as MIMO systems, employ multiple antennas at both transmitter and receiver, thereby creating a multitude of signalling pathways between transmitter and receiver. These multiple pathways give the signal a diversity advantage with which to combat fading. Apart from helping overcome the effects of fading, MIMO systems can also be shown to provide a manyfold increase in the amount of information that can be transmitted from transmitter to receiver. Not surprisingly,MIMO has played, and continues to play, a key role in the advancement of wireless communication.Space-time codes are a reference to a signalling format in which information about the message is dispersed across both the spatial (or antenna) and time dimension. Algebraic techniques drawing from algebraic structures such as rings, fields and algebras, have been extensively employed in the construction of optimal space-time codes that enable the potential of MIMO communication to be realized, some of which have found their way into the IEEE wireless communication standards. In this tutorial article, reflecting the authors’interests in this area, we survey some of these techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide some conditions for the graph of a Holder-continuous function on (D) over bar, where (D) over bar is a closed disk in C, to be polynomially convex. Almost all sufficient conditions known to date - provided the function (say F) is smooth - arise from versions of the Weierstrass Approximation Theorem on (D) over bar. These conditions often fail to yield any conclusion if rank(R)DF is not maximal on a sufficiently large subset of (D) over bar. We bypass this difficulty by introducing a technique that relies on the interplay of certain plurisubharmonic functions. This technique also allows us to make some observations on the polynomial hull of a graph in C(2) at an isolated complex tangency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop an online actor-critic reinforcement learning algorithm with function approximation for a problem of control under inequality constraints. We consider the long-run average cost Markov decision process (MDP) framework in which both the objective and the constraint functions are suitable policy-dependent long-run averages of certain sample path functions. The Lagrange multiplier method is used to handle the inequality constraints. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal solution. We also provide the results of numerical experiments on a problem of routing in a multi-stage queueing network with constraints on long-run average queue lengths. We observe that our algorithm exhibits good performance on this setting and converges to a feasible point.