228 resultados para Backpropagation algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of scheduling divisible loads in distributed computing systems, in presence of processor release time is considered. The objective is to find the optimal sequence of load distribution and the optimal load fractions assigned to each processor in the system such that the processing time of the entire processing load is a minimum. This is a difficult combinatorial optimization problem and hence genetic algorithms approach is presented for its solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider an optimal power and rate scheduling problem for a multiaccess fading wireless channel with the objective of minimising a weighted sum of mean packet transmission delay subject to a peak power constraint. The base station acts as a controller which, depending upon the buffer lengths and the channel state of each user, allocates transmission rate and power to individual users. We assume perfect channel state information at the transmitter and the receiver. We also assume a Markov model for the fading and packet arrival processes. The policy obtained represents a form of Indexability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many optimal control problems are characterized by their multiple performance measures that are often noncommensurable and competing with each other. The presence of multiple objectives in a problem usually give rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Evolutionary algorithms have been recognized to be well suited for multi-objective optimization because of their capability to evolve a set of nondominated solutions distributed along the Pareto front. This has led to the development of many evolutionary multi-objective optimization algorithms among which Nondominated Sorting Genetic Algorithm (NSGA and its enhanced version NSGA-II) has been found effective in solving a wide variety of problems. Recently, we reported a genetic algorithm based technique for solving dynamic single-objective optimization problems, with single as well as multiple control variables, that appear in fed-batch bioreactor applications. The purpose of this study is to extend this methodology for solution of multi-objective optimal control problems under the framework of NSGA-II. The applicability of the technique is illustrated by solving two optimal control problems, taken from literature, which have usually been solved by several methods as single-objective dynamic optimization problems. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel algorithm for learning oblique decision trees. Most of the current decision tree algorithms rely on impurity measures to assess goodness of hyperplanes at each node. These impurity measures do not properly capture the geometric structures in the data. Motivated by this, our algorithm uses a strategy, based on some recent variants of SVM, to assess the hyperplanes in such a way that the geometric structure in the data is taken into account. We show through empirical studies that our method is effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we derive a fast, novel time-domain algorithm to compute the nth-order moment of the power spectral density of the photoelectric current as measured in laser-Doppler flowmetry (LDF). It is well established that in the LDF literature these moments are closely related to fundamental physiological parameters, i.e. concentration of moving erythrocytes and blood flow. In particular, we take advantage of the link between moments in the Fourier domain and fractional derivatives in the temporal domain. Using Parseval's theorem, we establish an exact analytical equivalence between the time-domain expression and the conventional frequency-domain counterpart. Moreover, we demonstrate the appropriateness of estimating the zeroth-, first- and second-order moments using Monte Carlo simulations. Finally, we briefly discuss the feasibility of implementing the proposed algorithm in hardware.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm to improve the computation time of packing calculations for macromolecules is presented. This is achieved by reducing the three-dimensional search to a small set of two-dimensional searches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given two simple polygons, the Minimal Vertex Nested Polygon Problem is one of finding a polygon nested between the given polygons having the minimum number of vertices. In this paper, we suggest efficient approximate algorithms for interesting special cases of the above using the shortest-path finding graph algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a simulation based algorithm for finite horizon Markov decision processes with finite state and finite action space. Illustrative numerical experiments with the proposed algorithm are shown for problems in flow control of communication networks and capacity switching in semiconductor fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall performance of random early detection (RED) routers in the Internet is determined by the settings of their associated parameters. The non-availability of a functional relationship between the RED performance and its parameters makes it difficult to implement optimization techniques directly in order to optimize the RED parameters. In this paper, we formulate a generic optimization framework using a stochastically bounded delay metric to dynamically adapt the RED parameters. The constrained optimization problem thus formulated is solved using traditional nonlinear programming techniques. Here, we implement the barrier and penalty function approaches, respectively. We adopt a second-order nonlinear optimization framework and propose a novel four-timescale stochastic approximation algorithm to estimate the gradient and Hessian of the barrier and penalty objectives and update the RED parameters. A convergence analysis of the proposed algorithm is briefly sketched. We perform simulations to evaluate the performance of our algorithm with both barrier and penalty objectives and compare these with RED and a variant of it in the literature. We observe an improvement in performance using our proposed algorithm over RED, and the above variant of it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop a novel auction algorithm for procuring wireless channel by a wireless node in a heterogeneous wireless network. We assume that the service providers of the heterogeneous wireless network are selfish and non-cooperative in the sense that they are only interested in maximizing their own utilities. The wireless user needs to procure wireless channels to execute multiple tasks. To solve the problem of the wireless user, we propose a reverse optimal (REVOPT) auction and derive an expression for the expected payment by the wireless user. The proposed auction mechanism REVOPT satisfies important game theoretic properties such as Bayesian incentive compatibility and individual rationality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe an efficient coordinated-checkpointing and recovery algorithm which can work even when the channels are assumed to be non-FIFO, and messages may be lost. Nodes are assumed to be autonomous, and they do not block while taking checkpoints. Based on the local conditions, any process can request the previous coordinator for the 'permission' to initiate a new checkpoint. Allowing multiple initiators of checkpoints avoids the bottleneck associated with a single initiator, but the algorithm permits only a single instance of checkpointing process at any given time, thus reducing much of the overhead associated with multiple initiators of distributed algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denoising of medical images in wavelet domain has potential application in transmission technologies such as teleradiology. This technique becomes all the more attractive when we consider the progressive transmission in a teleradiology system. The transmitted images are corrupted mainly due to noisy channels. In this paper, we present a new real time image denoising scheme based on limited restoration of bit-planes of wavelet coefficients. The proposed scheme exploits the fundamental property of wavelet transform - its ability to analyze the image at different resolution levels and the edge information associated with each sub-band. The desired bit-rate control is achieved by applying the restoration on a limited number of bit-planes subject to the optimal smoothing. The proposed method adapts itself to the preference of the medical expert; a single parameter can be used to balance the preservation of (expert-dependent) relevant details against the degree of noise reduction. The proposed scheme relies on the fact that noise commonly manifests itself as a fine-grained structure in image and wavelet transform allows the restoration strategy to adapt itself according to directional features of edges. The proposed approach shows promising results when compared with unrestored case, in context of error reduction. It also has capability to adapt to situations where noise level in the image varies and with the changing requirements of medical-experts. The applicability of the proposed approach has implications in restoration of medical images in teleradiology systems. The proposed scheme is computationally efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of assigning customers to satellite channels is considered. Finding an optimal allocation of customers to satellite channels is a difficult combinatorial optimization problem and is shown to be NP-complete in an earlier study. We propose a genetic algorithm (GA) approach to search for the best/optimal assignment of customers to satellite channels. Various issues related to genetic algorithms such as solution representation, selection methods, genetic operators and repair of invalid solutions are presented. A comparison of this approach with the standard optimization method is presented to show the advantages of this approach in terms of computation time

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The associated model for binary systems has been modified to include volume effects and excess entropy arising from preferential interactions between the associate and the free atoms or between the free atoms. Equations for thermodynamic mixing functions have been derived. An optimization procedure using a modified conjugate gradient method has been used to evaluate the enthalpy and entropy interaction energies, the free energy of dissociation of the complex, its temperature dependance and the size of the associate. An expression for the concentration—concentration structure factor [Scc (0)] has been deduced from the modified associated solution model. The analysis has been applied to the thermodynamic mixing functions of liquid Ga-Te alloys at 1120 K, believed to contain Ga2Te3 associates. It is observed that the modified associated solution model incorporating volume effects and terms for the temperature dependance of interaction energies, describes the thermodynamic properties of Ga-Te system satisfactorily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many problems of decision making under uncertainty the system has to acquire knowledge of its environment and learn the optimal decision through its experience. Such problems may also involve the system having to arrive at the globally optimal decision, when at each instant only a subset of the entire set of possible alternatives is available. These problems can be successfully modelled and analysed by learning automata. In this paper an estimator learning algorithm, which maintains estimates of the reward characteristics of the random environment, is presented for an automaton with changing number of actions. A learning automaton using the new scheme is shown to be e-optimal. The simulation results demonstrate the fast convergence properties of the new algorithm. The results of this study can be extended to the design of other types of estimator algorithms with good convergence properties.