119 resultados para Bäcklund transformation
Resumo:
Thin films of the semiconducting, monoclinic vanadium dioxide, VO2(M) have been prepared on ordinary glass by two methods: directly by low-pressure metalorganic chemical vapor deposition (MOCVD), and by argon-annealing films of the VO2(B) phase deposited by MOCVD. The composition and microstructure of the films have been examined by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Films made predominantly of either the B or the M phase, as deposited, can only be obtained over a narrow range of deposition temperatures. At the lower end of this temperature range, the as-deposited films are strongly oriented, although the substrate is glass. This can be understood from the drive to minimize surface energy. Films of the B phase have a platelet morphology, which leads to an unusual microstructure at the lower-deposition temperatures. Those grown at similar to370 degreesC convert to the metallic, rutile (R) phase when annealed at 550 degreesC, whereas those deposited at 420 degreesC transform to the R phase only at 580 degreesC. (When cooled to room temperature, the annealed films convert reversibly from the R phase to the M phase.) Electron microscopy shows that annealing leads to disintegration of the single crystalline VO2(B) platelets into small crystallites of VO2(R), although the platelet morphology is retained. When the annealing temperature is relatively low, these crystallites are nanometer sized. At a higher-annealing temperature, the transformation leads to well-connected and similarly oriented large grains of VO2(R), enveloped in the original platelet. The semiconductor-metal transition near 68 degreesC leads to a large jump in resistivity in all the VO2(M) films, nearly as large as in epitaxial films on single-crystal substrates. When the annealed films contain well-connected large grains, the transition is very sharp. Even when preferred orientation is present, the transition is not as sharp in as-deposited VO2(M), because the crystallites are not densely packed as in annealed VO2(B). However, the high degree of orientation in these films leads to a narrow temperature hysteresis. (C) 2002 American Institute of Physics.
Resumo:
In Neurospora crassa, multinucleate macroconidia are used for genetic transformation. The barrier for such a transformation can be either at the cell membrane level or at the nuclear membrane level. For assessment of these possibilities, a forced heterokaryon (containing two genetically marked nuclei and auxotrophic for histidine) of Neurospora crassa was transformed with a plasmid containing his-3(+) gene. The transformants, which could grow without histidine supplementation, were then resolved into component homokaryons to determine into which nucleus or nuclei the plasmid had entered. Our results suggest that the barrier for transformation in Neurospora crassa is at the nuclear level, not at the cell membrane level. In a heterokaryon containing two genetically distinct nuclei, plasmid DNA integrated into only one of the nuclear types at any instance, but never into both nuclear types. Thus, in Neurospora crassa, the competent nucleus is essential for the transformation event to take place, and at a given time only one type of nucleus is competent to take up the exogenous DNA. Genomic Southern analysis showed that the transformants harbor both ectopic and homologous integrations of the plasmid DNA. The type and number of integrations were reflected at the post-translational level, since the specific activity of histidinol dehydrogenase (the translation product of his-3+ gene) was variable among several transformants and always less than the level of the wild type.
Resumo:
Analysis of the serpentine folded-waveguide slow-wave structure was carried out using elliptical conformal transformation, for the dispersion and interaction impedance characteristics of the structure. The results obtained from the present analysis were compared with those from 3D electromagnetic simulation using MAFIA.
Resumo:
In this work, the incubation period for the onset of sphalerite to wurtzite transformation in isolated ZnS nanoparticles 2 to 7 nm in size was determined via the in situ isothermal annealing of as-synthesized sphalerite nanoparticles in a transmission electron microscope (TEM). Nanoparticles sitting on the TEM grid were well separated from each other in order to minimize particle sintering during the annealing operation. The phase transformation onset was observed at 300 degrees C, 350 degrees C, and 400 degrees C after 90, 10, and 4 min, respectively. These time-temperature data for the phase transformation onset were then used to calculate the activation energy for the nucleation of the wurtzite phase in 2 to 7 nm sphalerite particles. The activation energy determined was 24 Kcal/mol. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3622625]
Resumo:
Phase transformation behaviour of amorphous electroless Ni-B coating with a targeted composition of Ni-6wt% B is characterized in conjunction with microstructural development and hardness. Microscopic observations of the as-deposited coating display a novel microstructure which is already phase separated at multiple length scales. Spherical colonies of similar to 5 mu m consist of 2-3 mu m nodular regions which are surrounded by similar to 2-3 mu m region that contains fine bands ranging from 10 to 70 nm in width. The appearance of three crystalline phases in this binary system at different stages of heat treatment and the concomitant variation in hardness are shown to arise from nanoscale fluctuations in the as-deposited boron content from 4 to 8 wt%. High temperature annealing reveals continuous crystallization up to 430 degrees C, overlapping with the domain of B loss due to diffusion into the substrate. The implications of such a microstructure for optimal heat treatment procedures are discussed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We report the shape evolution of free gold agglomerates with different morphologies that transform to ellipsoidal and then to spherical shapes during the heating cycle. The shape transformation is associated with a structural transition from polycrystalline to single crystalline. The structural transition temperature is shown to be dependent on the final size of the particles and not on the initial morphologies of the agglomerates. It is also shown that the transition occurs well below the melting temperature which is in contrast with the melt-freeze process reported in the literature.
Resumo:
Shock waves are one of the most competent mechanisms of energy dissipation observed in nature. We have developed a novel device to generate controlled micro-shock waves using an explosive-coated polymer tube. In this study, we harnessed these controlled micro-shock waves to develop a unique bacterial transformation method. The conditions were optimized for the maximum transformation efficiency in Escherichia coli. The maximum transformation efficiency was obtained when we used a 30 cm length polymer tube, 100 mu m thick metal foil, 200 mM CaCl(2), 1 ng/mu l plasmid DNA concentration, and 1 x 10(9) cell density. The highest transformation efficiency achieved (1 x 10(-5) transformants/cell) was at least 10 times greater than the previously reported ultrasound-mediated transformation (1 x 10(-6) transformants/cell). This method was also successfully employed for the efficient and reproducible transformation of Pseudomonas aeruginosa and Salmonella typhimurium. This novel method of transformation was shown to be as efficient as electroporation with the added advantage of better recovery of cells, reduced cost (40 times cheaper than a commercial electroporator), and growth phase independent transformation. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A novel size dependent FCC (face-centered-cubic) -> HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions < 20 are found unstable in nature, and they undergo a FCC -> HCP phase transformation, which is driven by tensile surface stress induced high internal compressive stresses. FCC nanowire with cross-sectional dimensions > 20 , in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC -> HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.
Resumo:
The approach taken in this paper in order to modify the scattering features of electrons and phonons and improve the figure of merit (ZT) of thermoelectric PbTe is to alter the microstructure at constant chemistry. A lamellar pattern of PbTe/GeTe at the nano- and microscale was produced in Pb(0.36)Ge(0.64)Te alloy by the diffusional decomposition of a supersaturated solid solution. The mechanism of nanostructuration is most likely a discontinuous spinodal decomposition. A simple model relating the interface velocity to the observed lamellar spacing is proposed. The effects of nanostructuration in Pb(0.36)Ge(0.64)Te alloy on the electrical and thermal conductivity, thermopower and ZT were investigated. It was shown that nanostructuration through the formation of a lamellar pattern of PbTe/GeTe is unlikely to provide a significant improvement due to the occurrence of discontinuous coarsening. However, the present study allows an analysis of possible strategies to improve thermoelectric materials via optimal design of the microstructure and optimized heat treatment. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Two copper-containing compounds [Cu(3)(mu(3)-OH)(2)-(H(2)O)(2){(SO(3))-C(6)H(3)-(COO)(2)}(CH(3)COO)] , I, and [Cu(5)(mu(3)-OH)(2)(H(2)O)(6){(NO(2))-C(6)H(3)-(COO)(2)}(4)]center dot 5H(2)O, II, were prepared using sulphoisophthalic and nitroisophthalic acids. The removal of the coordinated water molecules in the compounds was investigated using in situ single crystal to single crystal (SCSC) transformation studies, temperature-dependent powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The efficacy of SCSC transformation studies were established by the observation of dimensionality cross-over from a two-dimensional (I) to a three-dimensional structure, Cu(6)(mu(3)-OH)(4){(SO(3))-C(6)H(3)-(COO)(2)}(2)(CH(3)COO)(2), Ia, during the removal of the coordinated water molecules. Compound H exhibited a structural reorganization forming Cu(5)(mu(2)-OH)(2){(NO(2))C(6)H(3)-(COO)(2))(4)], Ha, possessing trimeric (Cu(3)O(12)) and dimeric (Cu(2)O(8)) copper clusters. The PXRD studies indicate that the three-dimensional structure (Ia) is transient and unstable, reverting back to the more stable two-dimensional structure (I) on cooling to room temperature. Compound Ha appears to be more stable at room temperature. The rehydration/dehydration studies using a modified TGA setup suggest complete rehydration of the water molecules, indicating that the water molecules in both compounds are labile. A possible model for the observed changes in the structures has been proposed. Magnetic studies indicate changes in the exchanges between the copper centers in Ha, whereas no such behavior was observed in Ia.
Resumo:
This research is focused on understanding the role of microstructural variables and processing parameters in obtaining optimised dual phase structures in medium carbon low alloy steels. Tempered Martensite structures produced at 300, 500, and 650 degrees C, were cold rolled to varied degrees ranging from 20 to 80% deformation. Intercritical annealing was then performed at 740, 760, and 780 degrees C for various time duration ranging from 60 seconds to 60 minutes before quenching in water. The transformation behaviour was studied with the aid of optical microscopy and hardness curves. From the results, it is observed that microstructural condition, deformation, and intercritical temperatures influenced the chronological order of the competing stress relaxation and decomposition phase reactions which interfered with the rate of the expected alpha -> gamma transformation. The three unique transformation trends observed are systematically analyzed. It was also observed that the 300 and 500 degrees C tempered initial microstructures were unsuitable for the production of dual structures with optimized strength characteristics.
Resumo:
One characteristic feature of the athermal beta -> omega transformation is the short time scale of the transformation. So far, no clear understanding of this issue exists. Here we construct a model that includes contributions from a Landau sixth-order free energy density, kinetic energy due to displacement, and the Rayleigh dissipation function to account for the dissipation arising from the rapid movement of the parent product interface during rapid nucleation. We also include the contribution from omega-like fluctuations to local stress. The model shows that the transformation is complete on a time scale comparable to the velocity of sound. The estimated nucleation rate is several orders higher than that for diffusion-controlled transformations. The model predicts that the athermal omega phase is limited to a certain range of alloying composition. The estimated nucleation rate and the size of ``isothermal'' particles beyond 17% Nb are also consistent with experimental results. The model provides an explanation for the reprecipitation process of the omega particles in the ``cleared'' channels formed during deformation of omega-forming alloys. The model also predicts that acoustic emission should be detectable during the formation of the athermal phase. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Considering the linearized boundary layer equations for three-dimensional disturbances, a Mangler type transformation is used to reduce this case to an equivalent two-dimensional one.