119 resultados para Axial fatigue
Resumo:
Design, analysis and technology for the integrity enhancement of damaged or underdesigned structures continues to be an engineering challenge. Bonded composite patch repairs to metallic structures is receiving increased attention in the recent years. It offers various advantages over rivetted doubler, particularly for airframe repairs. This paper presents an experimental investigation of residual strength and fatigue crack-growth life of an edge-cracked aluminium specimen repaired using glass epoxy composite patch. The investigation begins with the evaluation of three different surface treatments from bond strength viewpoint. A simple thumb rule formula is employed to estimate the patch size. Cracked and repaired specimens are tested under static and fatigue loading. The patch appears to restore the original strength of the undamaged specimen and enhance the fatigue crack growth life by an order of magnitude. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Dispersion of the liquid in a porous media is of great importance in many areas of engineering and has been studied by several researchers so far. A new experimental method has been developed to measure the dispersion coefficient. X-ray absorption technique provides a better understanding of dispersion that characterizes the mixing phenomenon in the packed beds. This is because the method is non-invasive and also it gives tracer concentration data at every point within the bed. The axial dispersion in a cylindrical bed of non-porous and non-wetting spherical particles has been measured for the flow of water. Aqueous barium chloride solution has been used a as tracer. X-ray images, recorded on a videocassette, have been analyzed using an image processing software to extract the local interstitial velocity and concentration data in the bed. Local dispersion coefficient has been determined with the help of aforementioned data. By using these data, the overall dispersion coefficient in a packed bed can also be estimated.
Resumo:
A copper(II) complex containing a NSO-donor Schiff base and NN-donor 2,2'-bipyridine has been prepared and structurally characterized. The square pyramidal complex with an axial sulfur ligation is a structural model for the CUB site of dopamine-hydroxylase in its oxidized form. The copper(II) complex is catalytically active in the oxidation of ascorbic acid by dioxygen mediated by a copper(I) species which is proposed to have a four-coordinate structure with a N3S coordination geometry.
Resumo:
A series of high-martensite dual-phase (HMDP) steels exhibiting a 0.3 to 0.8 volume fraction of martensite (V m ), produced by intermediate quenching (IQ) of a vanadium and boron-containing microalloyed steel, have been studied for toughness and fatigue behavior to supplement the contents of a recent report by the present authors on the unusual tensile behavior of these steels. The studies included assessment of the quasi-static and dynamic fracture toughness and fatigue-crack growth (FCG) behavior of the developed steels. The experimental results show that the quasi-static fracturetoughness (K ICV ) increases with increasing V m in the range between V m =0.3 and 0.6 and then decreases, whereas the dynamic fracture-toughness parameters (K ID , K D , and J ID ) exhibit a significant increase in their magnitudes for steels containing 0.45 to 0.60 V m before achieving a saturation plateau. Both the quasi-static and dynamic fracture-toughness values exhibit the best range of toughnesses for specimens containing approximately equal amounts of precipitate-free ferrite and martensite in a refined microstructural state. The magnitudes of the fatigue threshold in HMDP steels, for V m between 0.55 and 0.60, appear to be superior to those of structural steels of a similar strength level. The Paris-law exponents (m) for the developed HMDP steels increase with increasing V m , with an attendant decrease in the pre-exponential factor (C).
Resumo:
A vacuum interrupter utilises magnetic field for effective arc extinction. Based on the type of field, the vacuum interrupters are classified as radial or axial magnetic type of vacuum interrupters. This paper focuses on the axial magnetic field type of vacuum interrupters. The magnitude and distribution of the axial magnetic field is a function of the design of the contact system. It also depends on the orientations of the movable and fixed contact systems with respect to each other. This paper investigates the dependence of arcing and erosion performance of the contact on the magnitude and distribution of this axially oriented magnetic field. The experimental observations are well supported by electromagnetic simulations.
Resumo:
This article deals with the axial wave propagation properties of a coupled nanorod system with consideration of small scale effects. The nonlocal elasticity theory has been incorporated into classical rod/bar model to capture unique features of the coupled nanorods under the umbrella of continuum mechanics theory. Nonlocal rod model is developed for coupled nanorods. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behavior of nanorods from those of macroscopic rods. Explicit expressions are derived for wavenumber, cut-off frequency and escape frequency of nanorods. The analysis shows that the wave characteristics of nanorods are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial or longitudinal wave mode, where no wave propagation occurs. This is manifested in the spectrum cures as the region, where the wavenumber tends to infinite or wave speed tends to zero. The effect of the coupled spring stiffness is also capture in the present analysis. It has been also shown that the cut-off frequency increases as the stiffness of the coupled spring increases and also the coupled spring stiffness has no effect on escape frequency of the axial wave mode in the nanorod. This cut-off frequency is also independent of the nonlocal small scale parameter. The present study may bring in helpful insights while investigating multiple-nanorod-system-models for future nano-optomechanical systems applications. The results can also provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of coupled single-walled carbon nanotubes or coupled nanorods. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, one-dimensional flow-acoustic analysis of two basic configurations of air cleaners, (i) Rectangular Axial-Inlet, Axial-Outlet (RAIAO) and (ii) Rectangular Transverse-Inlet, Transverse-Outlet (RTITO), has been presented. This 1-D analytical approach has been verified with the help of 3-D FEM based software. Through subtraction of the acoustic performance of the bare plenum (without filter element) from that of the complete air cleaner box, the solitary performance of the filter element has been evaluated. Part of the present analysis illustrates that the analytical formulation remains effective even with offset positioning of the air pipes from the centre of the cross section of the air cleaner. The 1-D analytical tool computes much faster than its 3-D simulation counterpart. The present analysis not only predicts the acoustical impact of mean flow, but it also depicts the scenario with increased resistance of the filter element. Thus, the proposed 1-D analysis would help in the design of acoustically efficient air cleaners for automotive applications. (C) 2011 Institute of Noise Control Engineering.