153 resultados para Anti-restenotic Agent
Resumo:
Mycobacterium tuberculosis, an etiological agent of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Pathogenic mycobacteria survive in the host by subverting host innate immunity. Dendritic cells (DCs) are professional antigen-presenting cells that are vital for eliciting immune responses to infectious agents, including pathogenic mycobacteria. DCs orchestrate distinct Th responses based on the signals they receive. In this perspective, deciphering the interactions of the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family of proteins of M. tuberculosis with DCs assumes significant pathophysiological attributes. In this study, we demonstrate that Rv1917c (PPE34), a representative member of the proline-proline-glutamic-major polymorphic tandem repeat family, interacts with TLR2 and triggers functional maturation of human DCs. Signaling perturbations implicated a critical role for integrated cross-talk among PI3K-MAPK and NF-kappa B signaling cascades in Rv1917c-induced maturation of DCs. However, this maturation of DCs was associated with a secretion of high amounts of anti-inflammatory cytokine IL-10, whereas Th1-polarizing cytokine IL-12 was not induced. Consistent with these results, Rv1917c-matured DCs favored secretion of IL-4, IL-5, and IL-10 from CD4(+) T cells and contributed to Th2-skewed cytokine balance ex vivo in healthy individuals and in patients with pulmonary tuberculosis. Interestingly, the Rv1917c-skewed Th2 immune response involved induced expression of cyclooxygenase-2 (COX-2) in DCs. Taken together, these results indicate that Rv1917c facilitates a shift in the ensuing immunity toward the Th2 phenotype and could aid in immune evasion by mycobacteria.
Resumo:
The enzymes of the family of tRNA synthetases perform their functions with high precision by synchronously recognizing the anticodon region and the aminoacylation region, which are separated by ?70 in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modeled the structure of the complex consisting of Escherichia coli methionyl-tRNA synthetase (MetRS), tRNA, and the activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross-correlations between the residues in MetRS have been evaluated. Furthermore, the network analysis on these simulated structures has been carried out to elucidate the paths of communication between the activation site and the anticodon recognition site. This study has provided the detailed paths of communication, which are consistent with experimental results. Similar studies also have been carried out on the complexes (MetRS + activated methonine) and (MetRS + tRNA) along with ligand-free native enzyme. A comparison of the paths derived from the four simulations clearly has shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The details of the method of our investigation and the biological implications of the results are presented in this article. The method developed here also could be used to investigate any protein system where the function takes place through long-distance communication.
Resumo:
One of the major tasks in swarm intelligence is to design decentralized but homogenoeus strategies to enable controlling the behaviour of swarms of agents. It has been shown in the literature that the point of convergence and motion of a swarm of autonomous mobile agents can be controlled by using cyclic pursuit laws. In cyclic pursuit, there exists a predefined cyclic connection between agents and each agent pursues the next agent in the cycle. In this paper we generalize this idea to a case where an agent pursues a point which is the weighted average of the positions of the remaining agents. This point correspond to a particular pursuit sequence. Using this concept of centroidal cyclic pursuit, the behavior of the agents is analyzed such that, by suitably selecting the agents' gain, the rendezvous point of the agents can be controlled, directed linear motion of the agents can be achieved, and the trajectories of the agents can be changed by switching between the pursuit sequences keeping some of the behaviors of the agents invariant. Simulation experiments are given to support the analytical proofs.
Resumo:
Titanium(III) tetrahydroborate formed by the reaction of titanium tetrachloride and benzyltriethylammonium borohydride (1:4) reacts with alkenes in dichloromethane (-20-degrees-C) very readily to yield directly the corresponding alcohols in excel lent yields after a simple aqueous work up.
Resumo:
The details of the first total synthesis of a natural thapsane lg containing three contiguous quaternary carbon atoms, starting from cyclogeraniol (9) '5 described. The Claisen rearrangement of 9 with methoxypropene in the presence of a catalytic amount of propionic acid produced ketone 10. Rhodium acetate-catalyzed intramolecular cyclopropanation of a-diazo-&keto ester 12, obtained from 10 via 8-keto ester 8, furnished cyclopropyl keto ester 7. Lithium in liquid ammonia reductive cleavage of cyclopropyl compound 7 gave a 1:l mixture of hydrindanone 6 and keto1 13. Wittig methylenation of 6 furnished ester 21. Epoxidation of 21, followed by BF3-OEt2-catalyzed rearrangement of epoxide 23 afforded hemiacetal 25. Treatment of hemiacetal 25 with triethylsilane in trifluoroacetic acid furnished lactone 22, a degradation product of various thapsanes. Finally, DIBAH reduction of lactone 22 generated the thapsane
Resumo:
Background: Anti-idiotypic antibodies (Ab-2), which are the mirror images of idiotypic antibodies (Ab-1), may be useful as diagnostic reagents and for use as immunogen to induce antigen-specific immune responses. Methods and Results: To explore the biologic potential of Ab-2 as diagnostic reagents in allergic diseases, murine mouse (m) Ab-2 were raised by immunizing Balb/c mice with affinity purified rabbit (r) Ab-1 specific for the pollen of Parthenium hysterophorus, an allergenic weed that grows wild on the Indian subcontinent and in Australia, Mexico, and the southern United States. Affinity purified Parthenium-specific human (h)AB-1 could successfully inhibit the binding of mAb-2 to immobilized rAb-1. Further, Balb/c mice immunized with mAb-2 induced Parthenium-specific anti-anti-idiotypic IgE and IgG antibodies. Specificity of the Ab-2 was confirmed by the ability of Parthenium pollen extracts to inhibit the binding of allergen-specific IgE and IgG Ab-1 in the sera of patients with rhinitis to immobilized mAb-2. Parthenium-sensitive patients with rhinitis who had positive results on skin prick tests to Parthenium pollen extracts also responded with a positive skin reaction to mAb-2. Conclusion: Our data demonstrate that Parthenium-specific mAb-2 may be of value as surrogate allergens in allergen standardization and for in vitro diagnosis.
Resumo:
Gallic acid (GA), a key intermediate in the synthesis of plant hydrolysable tannins, is also a primary anti-inflammatory, cardio-protective agent found in wine, tea, and cocoa. In this publication, we reveal the identity of a gene and encoded protein essential for GA synthesis. Although it has long been recognized that plants, bacteria, and fungi synthesize and accumulate GA, the pathway leading to its synthesis was largely unknown. Here we provide evidence that shikimate dehydrogenase (SDH), a shikimate pathway enzyme essential for aromatic amino acid synthesis, is also required for GA production. Escherichia coli (E. coli) aroE mutants lacking a functional SDH can be complemented with the plant enzyme such that they grew on media lacking aromatic amino acids and produced GA in vitro. Transgenic Nicotiana tabacum lines expressing a Juglans regia SDH exhibited a 500% increase in GA accumulation. The J. regia and E. coli SDH was purified via overexpression in E. coli and used to measure substrate and cofactor kinetics, following reduction of NADP(+) to NADPH. Reversed-phase liquid chromatography coupled to electrospray mass spectrometry (RP-LC/ESI-MS) was used to quantify and validate GA production through dehydrogenation of 3-dehydroshikimate (3-DHS) by purified E. coli and J. regia SDH when shikimic acid (SA) or 3-DHS were used as substrates and NADP(+) as cofactor. Finally, we show that purified E. coli and J. regia SDH produced GA in vitro.
Resumo:
The aim of this paper is to develop a computationally efficient decentralized rendezvous algorithm for a group of autonomous agents. The algorithm generalizes the notion of sensor domain and decision domain of agents to enable implementation of simple computational algorithms. Specifically, the algorithm proposed in this paper uses a rectilinear decision domain (RDD) as against the circular decision domain assumed in earlier work. Because of this, the computational complexity of the algorithm reduces considerably and, when compared to the standard Ando's algorithm available in the literature, the RDD algorithm shows very significant improvement in convergence time performance. Analytical results to prove convergence and supporting simulation results are presented in the paper.
Resumo:
In this paper we develop a Linear Programming (LP) based decentralized algorithm for a group of multiple autonomous agents to achieve positional consensus. Each agent is capable of exchanging information about its position and orientation with other agents within their sensing region. The method is computationally feasible and easy to implement. Analytical results are presented. The effectiveness of the approach is illustrated with simulation results.
Resumo:
The present investigation explores the adaptability of a microwave assisted route to obtain silver nanoparticles by the reduction of AgNO3 with vanillin, an environmentally benign material. Anionic surfactants such as AOT and SDS were used separately for encapsulating AgNPs and their role was compared. The UV-Visible absorption spectra present a broad SPR band consisting of two peaks suggesting the formation of silver nanoparticle with bimodal size distribution. The TEM image shows particles with spherical and hexagonal morphologies which confirms the results of UV-Vis studies. The anisotropy in the particle morphology can be attributed to the surface oxidation which in turn produces Ag@Ag2O core-shell nanostructures. Thus an intriguing feature of this system is that the obtained colloid is a mixture of AgNPs with and without Ag2O layers. Studies on the influence of pH on the stability of the synthesized nanoparticles revealed that the presence of excess Ag2O layers has a profound influence on it. Ag2O layers can be removed from AgNPs' surface by changing the solution pH to the acidic regime. The present study attests the enhanced ability of AOT in stabilizing the AgNPs in aqueous media. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper addresses the problem of automated multiagent search in an unknown environment. Autonomous agents equipped with sensors carry out a search operation in a search space, where the uncertainty, or lack of information about the environment, is known a priori as an uncertainty density distribution function. The agents are deployed in the search space to maximize single step search effectiveness. The centroidal Voronoi configuration, which achieves a locally optimal deployment, forms the basis for the proposed sequential deploy and search strategy. It is shown that with the proposed control law the agent trajectories converge in a globally asymptotic manner to the centroidal Voronoi configuration. Simulation experiments are provided to validate the strategy. Note to Practitioners-In this paper, searching an unknown region to gather information about it is modeled as a problem of using search as a means of reducing information uncertainty about the region. Moreover, multiple automated searchers or agents are used to carry out this operation optimally. This problem has many applications in search and surveillance operations using several autonomous UAVs or mobile robots. The concept of agents converging to the centroid of their Voronoi cells, weighted with the uncertainty density, is used to design a search strategy named as sequential deploy and search. Finally, the performance of the strategy is validated using simulations.
Resumo:
Epoxy-terminated polystyrene has been synthesized by radical polymerization using alpha-(t-butylperoxymethyl) styrene (TPMS) as the chain transfer agent. The chain transfer constants were found to be 0.66 and 0.80 at 60 and 70 degrees C, respectively. The presence of epoxy end groups was confirmed by functional group modification of epoxide to aldehyde by treatment with BF3.Et(2)O. Thermal stability of TPMS was followed by differential scanning calorimetry and iodimetry. Thermal decomposition of TPMS in toluene follows first order kinetics with an activation energy of 23 kcal/mol. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Ethnopharmacological relevance: Malaria is a serious public health problem in the north-eastern region of India including Assam, in view of development of chloroquine resistant Plasmodium falciparum. There is need for alternative and affordable therapy. Aim of the study: This study was conducted to document indigenous knowledge, usage customs and practices of medicinal plant species traditionally used by the residents of Sonitpur district of Tezpur, Assam to treat malaria and its associated symptoms. Materials and methods:A total of 50 randomly selected sampling represented by male (38.76%) and female respondents (12.24%) were interviewed using a semi-structured questionnaire. Results: The present ethno-botanical survey revealed 22 species of plants belonging to 17 botanical families were reported to be used exclusively in this region for the treatment of malaria. Verbenaceae (three species), Menispermaceae (two species), and Acanthaceae (two species) botanical families represented the species that are most commonly cited in this survey work and the detailed use of plants has been collected and described. Conclusions: The most serious threat to the existing knowledge and practice on traditional medicinal plants included cultural change, particularly the influence of modernization and lack of interests shown by the next younger generations were the main problems reported by the informants during the field survey. Hence, the proper documentation of traditional medicinal plants being used as anti-malarial agents and related indigenous knowledge held by the tribal community is an important approach to control the spread of vector-borne diseases like malaria reported in this survey work. (C) 2010 Elsevier Ireland Ltd. All rights reserved.