65 resultados para Anacardium humile extract
Resumo:
For active contour modeling (ACM), we propose a novel self-organizing map (SOM)-based approach, called the batch-SOM (BSOM), that attempts to integrate the advantages of SOM- and snake-based ACMs in order to extract the desired contours from images. We employ feature points, in the form of ail edge-map (as obtained from a standard edge-detection operation), to guide the contour (as in the case of SOM-based ACMs) along with the gradient and intensity variations in a local region to ensure that the contour does not "leak" into the object boundary in case of faulty feature points (weak or broken edges). In contrast with the snake-based ACMs, however, we do not use an explicit energy functional (based on gradient or intensity) for controlling the contour movement. We extend the BSOM to handle extraction of contours of multiple objects, by splitting a single contour into as many subcontours as the objects in the image. The BSOM and its extended version are tested on synthetic binary and gray-level images with both single and multiple objects. We also demonstrate the efficacy of the BSOM on images of objects having both convex and nonconvex boundaries. The results demonstrate the superiority of the BSOM over others. Finally, we analyze the limitations of the BSOM.
Resumo:
A novel system for recognition of handprinted alphanumeric characters has been developed and tested. The system can be employed for recognition of either the alphabet or the numeral by contextually switching on to the corresponding branch of the recognition algorithm. The two major components of the system are the multistage feature extractor and the decision logic tree-type catagorizer. The importance of ldquogoodrdquo features over sophistication in the classification procedures was recognized, and the feature extractor is designed to extract features based on a variety of topological, morphological and similar properties. An information feedback path is provided between the decision logic and the feature extractor units to facilitate an interleaved or recursive mode of operation. This ensures that only those features essential to the recognition of a particular sample are extracted each time. Test implementation has demonstrated the reliability of the system in recognizing a variety of handprinted alphanumeric characters with close to 100% accuracy.
Resumo:
Trehalase (?,?-Trehalosee gludohydrolase, EC 3.2.1.28) was partially solubilized from the thermophilic fungus Humicola lanuginosa RM-B, and purified 184-fold. The purified enzyme was optimally active at 50°C in acetate buffer at pH 5.5. It was highly specific for ?,?-trehalose and had an apparent Km = 0.4 mM at 50°C. None of the other disaccharides tested either inhibited or activated the enzyme. The molecular weight of the enzyme was around 170000. Trehalase from mycelium grown at 40 and 50°C had similar properties. The purified enzyme, in contrast to that in the crude-cell free extract, was less stable. At low concentration, purified trehalase was afforded protection against heat-inactivation by �protective factor(s)� present in mycelial extracts. The �protective factor(s)� was sensitive to proteolytic digestion. It was not diffusable and was stable to boiling for at least 30 min. Bovine serum albumin and casein also protected the enzyme from heat-inactivation.
Resumo:
Background: Signal transduction events often involve transient, yet specific, interactions between structurally conserved protein domains and polypeptide sequences in target proteins. The identification and validation of these associating domains is crucial to understand signal transduction pathways that modulate different cellular or developmental processes. Bioinformatics strategies to extract and integrate information from diverse sources have been shown to facilitate the experimental design to understand complex biological events. These methods, primarily based on information from high-throughput experiments, have also led to the identification of new connections thus providing hypothetical models for cellular events. Such models, in turn, provide a framework for directing experimental efforts for validating the predicted molecular rationale for complex cellular processes. In this context, it is envisaged that the rational design of peptides for protein-peptide binding studies could substantially facilitate the experimental strategies to evaluate a predicted interaction. This rational design procedure involves the integration of protein-protein interaction data, gene ontology, physico-chemical calculations, domain-domain interaction data and information on functional sites or critical residues. Results: Here we describe an integrated approach called ``PeptideMine'' for the identification of peptides based on specific functional patterns present in the sequence of an interacting protein. This approach based on sequence searches in the interacting sequence space has been developed into a webserver, which can be used for the identification and analysis of peptides, peptide homologues or functional patterns from the interacting sequence space of a protein. To further facilitate experimental validation, the PeptideMine webserver also provides a list of physico-chemical parameters corresponding to the peptide to determine the feasibility of using the peptide for in vitro biochemical or biophysical studies. Conclusions: The strategy described here involves the integration of data and tools to identify potential interacting partners for a protein and design criteria for peptides based on desired biochemical properties. Alongside the search for interacting protein sequences using three different search programs, the server also provides the biochemical characteristics of candidate peptides to prune peptide sequences based on features that are most suited for a given experiment. The PeptideMine server is available at the URL: http://caps.ncbs.res.in/peptidemine