107 resultados para Aluminum sulfate.
Resumo:
A new type of bearing alloy containing ultrafine sized tin and silicon dispersions in aluminum was designed using laser surface alloying and laser remelting techniques. The microstructures of these non-equilibrium processed alloys were studied in detail using scanning and transmission electron microscopy. The microstructures revealed three distinct morphologies of tin particles namely elongated particles co-existing with silicon, globular particles, and very fine particles. Our detailed analyses using cellular growth theories showed that the formation of these globular tin particles was due to the pinching off of the tin rich liquid in the inter-cellular space by the growth of aluminum secondary dendrite arms. Evidence of fine recrystallized aluminum grains at the top layer due to constrained solidification was shown. Thermal analyses suggested that melting of the spherical shaped tin particles was controlled by the binary aluminum-tin eutectic reaction, whereas non-spherical tin particles melted via the tin-silicon eutectic reaction.
Resumo:
We report the formation ω phase in the remelted layers during laser cladding and remelting of quasicrystal forming Al65Cu23.3Fe11.7 alloy on pure aluminum. The ω phase is absent in the clad layers. In the remelted layer, the phase nucleates at the periphery of the primary icosahedral phase particles. A large number of ω phase particles forms enveloping the icosahedral phase growing into aluminum rich melt, which solidify as α-Al solid solution. On the other side it develops an interface with aluminum. A detailed transmission electron microscopic analysis shows that ω phase exhibits orientation relationship with icosahedral phase. The composition analysis performed using energy dispersive x-ray analyzer suggests that this phase has composition higher aluminum than the icosahedral phase. The analysis of the available phase diagram information indicates that the present results represent large departure from equilibrium conditions. A possible scenario of the evolution of the ω phase has been suggested.
Resumo:
In many industrial casting processes, knowledge of the solid fraction evolution during the solidification process is a key factor in determining the process parameters such as cooling rate, stirring intensity and in estimating the total solidification time. In the present work, a new method of estimating solid fraction is presented, which is based on calorimetric principles. In this method, the cooling curve data at each point in the melt, along with the thermal boundary conditions, are used to perform energy balance in the mould, from which solid fraction generation during any time interval can be estimated. This method is applied to the case of a rheocasting process, in which Al-Si alloy (A356 alloy) is solidified by stirring in a cylindrical mould placed in the annulus of a linear electromagnetic stirrer. The metal in the mould is simultaneously cooled and stirred to produce a cylindrical billet with non-dendritic globular microstructure. Temperature is measured at key locations in the mould to assess the various heat exchange processes prevalent in the mould and to monitor the solidification rate. The results obtained by energy balance method are compared with those by the conventional procedure of calculating solid fraction using the Schiel equation.
Resumo:
Activities in the PbO-PbSO4 melts at 1253 K have been measured by emf and gas-equilibration techniques. The activity of PbO was directly obtained from the emf of the solid oxide cell, Pt, Ni-NiO/CaO-ZrO2/Auo.92PbO.08, PbOx-PbSO4(1-x), Ir, Pt for 1.0 >XPbO > 0.6. The melt and the alloy were contained in closed zirconia crucibles. Since the partial pressure of SO2 gas in equilibrium with the melt and alloy was appreciable (>0.08 atm) atXPbO < 0.6, activities at lower PbO concentrations were derived from measurements of the weight gain of pure PbO under controlled gas streans of Ar + SO2 + O2. The partial and integral free energies of mixing at 1253 K were calculated and found to fit a subregular model: ΔGEPbO =X2PbSO4 {-42,450 + 20,000X2PbSO4} J mol-1 ΔGEPbO =X2pbSO {-12,450 - 20,000XPbS} J mol-1 ΔGEpbSOXPbSO4 {-32,450XPbS - 22,450XPbSO4 } J mol-1. The standard free energy of formation of liquid PbSO4 from pure liquid PbO and gaseous SO3 at 1 atm at 1253 K was evaluated as -88.02 (±0.72) kJ mol-1.
Resumo:
The plastic flow of quenched aluminium at 86°K was investigated by ‘differential-stress’ creep tests in order to evaluate the rate-controlling mechanism in as-quenched and fully aged states. The experimental values of activation volume (4·3 × 10−21 cm3 for as-quenched and 5·5×l0−21cm3 for fully aged) and the total energy for thermal activation process (0·4 ev for both) are in accordance with the jog hardening and loop hardening mechanisms in quenched and fully aged states respectively.
Resumo:
In this article, we report the mechanical and biocompatibility properties of injection-molded high-density polyethylene (HDPE) composites reinforced with 40 wt % ceramic filler [hydroxyapatite (HA) and/or Al2O3] and 2 wt % titanate as a coupling agent. The mechanical property measurements revealed that a combination of a maximum tensile strength of 18.7 MPa and a maximum tensile modulus of about 855 MPa could be achieved with the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. For the same composite composition, the maximum compression strength was determined to be 71.6 MPa and the compression modulus was about 660 MPa. The fractrography study revealed the uniform distribution of ceramic fillers in the semicrystalline HDPE matrix. The cytocompatibility study with osteoblast-like SaOS2 cells confirmed extensive cell adhesion and proliferation on the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. The cell viability analysis with the 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed a statistically significant difference between the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites and sintered HA for various culture durations of upto 7 days. The difference in cytocompatibility properties among the biocomposites is explained in terms of the difference in the protein absorption behavior. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
We report the formation omega phase in the remelted layers during laser cladding and remelting of quasicrystal forming Al65Cu23.3Fe11.7 alloy on pure aluminum. The omega phase is absent in the clad layers. In the remelted layer, the phase nucleates at the periphery of the primary icosahedral phase particles. A large number of omega phase particles forms enveloping the icosahedral phase growing into aluminum rich melt, which solidify as alpha-Al solid solution. On the other side it develops an interface with aluminum. A detailed transmission electron microscopic analysis shows that omega phase exhibits orientation relationship with icosahedral phase. The composition analysis performed using energy dispersive x-ray analyzer suggests that this phase has composition higher aluminum than the icosahedral phase. The analysis of the available phase diagram information indicates that the present results represent large departure from equilibrium conditions. A possible scenario of the evolution of the omega phase has been suggested.