185 resultados para Aluminum nitrates
Photocatalytic degradation of gaseous toluene by using immobilized titania/silica on aluminum sheets
Resumo:
The aim of this study was to prepare a highly active immobilized titania/silica photocatalyst and to test its performance in situ toward degradation of toluene as one of the major toxic indoor contaminants. In this work, two different titania layers immobilized on Al sheets were synthesized via low temperature sol-gel method employing presynthesized highly active titania powders (Degussa P25 and Millennium PC500, mass ratio 1:1): (a) with a silica/titania binder and a protective layer and (b) without the binder. The photocatalysts were characterized by X-ray diffraction, nitrogen sorption measurements, scanning electron microscopy (SEM), infrared spectroscopy, and UV-vis diffuse reflectance spectroscopy (DRS). The in situ photocatalytic degradation of gaseous toluene was selected as a probe reaction to test photocatalytic activity and to verify the potential application of these materials for air remediation. Results show that nontransparent highly photocatalytically active coatings based on the silica/titania binder and homogeneously dispersed TiO2 powders were obtained on the Al sheets. The crystalline structure of titania was not altered upon addition of the binder, which also prevented inhomogeneous agglomeration of particles on the photocatalyst surface. The photoactivity results indicate that the adsorption properties and photocatalytic activity of immobilized photocatalysts with the silica/titania binder and an underlying protective layer were very effective and additionally, they exhibited considerably improved adhesion and uniformity. We present a new highly photocatalytically active immobilized catalyst on a convenient metallic support, which has a potential application in an air cleaning device.
Resumo:
Among all methods of metal alloy slurry preparation, the cooling slope method is the simplest in terms of design and process control. The method involves pouring of the melt from top, down an oblique and channel shaped plate cooled from bottom by counter flowing water. The melt, while flowing down, partially solidifies and forms columnar dendrites on plate wall. These dendrites are broken into equiaxed grains and are washed away with melt. The melt, together with the equiaxed grains, forms semisolid slurry collected at the slope exit and cast into billets having non-dendritic microstructure. The final microstructure depends on several process parameters such as slope angle, slope length, pouring superheat, and cooling rate. The present work involves scaling analysis of conservation equations of momentum, energy and species for the melt flow down a cooling slope. The main purpose of the scaling analysis is to obtain a physical insight into the role and relative importance of each parameter in influencing the final microstructure. For assessing the scaling analysis, the trends predicted by scaling are compared against corresponding numerical results using an enthalpy based solidification model with incorporation of solid phase movement.
Resumo:
A new coupled approach is presented for modeling the hydrogen bubble evolution and engulfment during an aluminum alloy solidification process in a micro-scale domain. An explicit enthalpy scheme is used to model the solidification process which is coupled with a level-set method for tracking the hydrogen bubble evolution. The volume averaging techniques are used to model mass, momentum, energy and species conservation equations in the chosen micro-scale domain. The interaction between the solid, liquid and gas interfaces in the system have been studied. Using an order-of-magnitude study on growth rates of bubble and solid interfaces, a criterion is developed to predict bubble elongation which can occur during the engulfment phase. Using this model, we provide further evidence in support of a conceptual thought experiment reported in literature, with regard to estimation of final pore shape as a function of typical casting cooling rates. The results from the proposed model are qualitatively compared with in situ experimental observations reported in literature. The ability of the model to predict growth and movement of a hydrogen bubble and its subsequent engulfment by a solidifying front has been demonstrated for varying average cooling rates encountered in typical sand, permanent mold, and various casting processes. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The characterization of a closed-cell aluminum foam with the trade name Alporas is carried out here under compression loading for a nominal cross-head speed of 1 mm/min. Foam samples in the form of cubes are tested in a UTM and the average stress-strain behavior is obtained which clearly displays a plateau strength of approximately 2 MPa. It is noted that the specific energy absorption capacity of the foam can be high despite its low strength which makes it attractive as a material for certain energy-absorbing countermeasures. The mechanical behavior of the present Alporas foam is simulated using cellular (i.e. so-called microstructure-based) and solid element-based finite element models. The efficacy of the cellular approach is shown, perhaps for the first time in published literature, in terms of prediction of both stress-strain response and inclined fold formation during axial crush under compression loading. Keeping in mind future applications under impact loads, limited results are presented when foam samples are subjected to low velocity impact in a drop-weight test set-up.
Resumo:
A combined 3D finite element simulation and experimental study of interaction between a notch and cylindrical voids ahead of it in single edge notch (tension) aluminum single crystal specimens is undertaken in this work. Two lattice orientations are considered in which the notch front is parallel to the crystallographic 10 (1) over bar] direction. The flat surface of the notch coincides with the (010) plane in one orientation and with the (1 (1) over bar1) plane in the other. Three equally spaced cylindrical voids are placed directly ahead of the notch tip. The predicted load-displacement curves, slip traces, lattice rotation and void growth from the finite element analysis are found to be in good agreement with the experimental observations for both the orientations. Finite element results show considerable through-thickness variation in both hydrostatic stress and equivalent plastic slip which, however, depends additionally on the lattice orientation. The through-thickness variation in the above quantities affects the void growth rate and causes it to differ from the center-plane to the free surface of the specimen. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The current study describes the evolution of microstructure and texture in an Al-Zn-Mg-Cu-Zr-based 7010 aluminum alloy during different modes of hot cross-rolling. Processing of materials involves three different types of cross-rolling. The development of texture in the one-step cross-rolled specimen can be described by a typical beta-fiber having the maximum intensity near Copper (Cu) component. However, for the multi-step cross-rolled specimens, the as-rolled texture is mainly characterized by a strong rotated-Brass (Bs) component and a very weak rotated-cube component. Subsequent heat treatment leads to sharpening of the major texture component (i.e., rotated-Bs). Furthermore, the main texture components in all the specimens appear to be significantly rotated in a complex manner away from their ideal positions because of non-symmetric deformations in the two rolling directions. Detailed microstructural study indicates that dynamic recovery is the dominant restoration mechanism operating during the hot rolling. During subsequent heat treatment, static recovery dominates, while a combination of particle-stimulated nucleation (PSN) and strain-induced grain boundary migration (SIBM) causes partial recrystallization of the grain structure. The aforementioned restoration mechanisms play an important role in the development of texture components. The textural development in the current study could be attributed to the combined effects of (a) cross-rolling and inter-pass annealing that reduce the intensity of Cu component after each successive pass, (b) recrystallization resistance of Bs-oriented grains, (c) stability of Bs texture under cross-rolling, and (d) Zener pinning by Al3Zr dispersoids.
Resumo:
The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (A (IP)) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The A (IP) and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low A (IP). The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill's anisotropic equation are compared with that obtained experimentally.
Resumo:
The present work describes the tensile flow and work hardening behavior of a high strength 7010 aluminum alloy by constitutive relations. The alloy has been hot rolled by three different cross-rolling schedules. Room temperature tensile properties have been evaluated as a function of tensile axis orientation in the as-hot rolled as well as peak aged conditions. It is found that both the Ludwigson and a generalized Voce-Bergstrom relation adequately describe the tensile flow behavior of the present alloy in all conditions compared to the Hollomon relation. The variation in the Ludwigson fitting parameter could be correlated well with the microstructural features and anisotropic contribution of strengthening precipitates in the as-rolled and peak aged conditions, respectively. The hardening rate and the saturation stress of the first Voce-Bergstrom parameter, on the other hand, depend mainly on the crystallographic texture of the specimens. It is further shown that for the peak aged specimens the uniform elongation (epsilon(u)) derived from the Ludwigson relation matches well with the measured epsilon(u) irrespective of processing and loading directions. However, the Ludwigson fit overestimates the epsilon(u) in case of the as-rolled specimens. The Hollomon fit, on the other hand, predicts well the measured epsilon(u), of the as-rolled specimens but severely underestimates the epsilon(u), for the peak aged specimens. Contrarily, both the relations significantly overestimate the UTS of the as-rolled and the peak aged specimens. The Voce-Bergstrom parameters define the slope of e Theta-sigma plots in the stage-III regime when the specimens show a classical linear decrease in hardening rate in stage-III. Further analysis of work hardening behavior throws some light on the effect of texture on the dislocation storage and dynamic recovery.
Resumo:
A356 and 6061 aluminum alloys were joined by friction stir welding at constant tool rotational rate with different tool-traversing speeds. Thermomechanical data of welding showed that increment in tool speed reduced the pseudo heat index and temperature at weld nugget (WN). On the other hand, volume of material within extrusion zone, strain rate, and Zenner Hollomon parameter were reduced with decrease in tool speed. Optical microstructure of WN exhibited nearly uniform dispersion of Si-rich particles, fine grain size of 6061 Al alloy, and disappearance of second phase within 6061 Al alloy. With enhancement in welding speed, matrix grain size became finer, yet size of Si-rich particles did not reduce incessantly. Size of Si-rich particles was governed by interaction time between tool and substrate. Mechanical property of WN was evaluated. It has been found that the maximum joint efficiency of 116% with respect to that of 6061 alloy was obtained at an intermediate tool-traversing speed, where matrix grain size was significantly fine and those of Si-rich particles were substantially small.
Resumo:
Schottky barrier devices of metal/semiconductor/metal structure were fabricated using organic semiconductor polyaniline (PANI) and aluminium thin film cathode. Aluminium contacts were made by thermal evaporation technique using two different forms of metals (bulk and nanopowder). The structure and surface morphology of these films were investigated by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. Grain size of the as-deposited films obtained by Scherrer's method, modified Williamson-Hall method, and SEM were found to be different. Current-voltage (I-V) characteristic of Schottky barrier device structure indicates that the calculated current density (J) for device fabricated from aluminium nanopowder is more than that from aluminium in bulk form.
Resumo:
In this work, a combined forming and fracture limit diagram, fractured void coalescence and texture analysis have been experimentally evaluated for the commercially available aluminum alloy Al 8011 sheet annealed at different temperatures viz. 200 degrees C, 250 degrees C, 300 degrees C and 350 degrees C. The sheets were examined at different annealing temperatures on microstructure, tensile properties, formability and void coalescence. The fractured surfaces of the formed samples were examined using scanning electron microscope (SEM) and these images were correlated with fracture behavior and formability of sheet metals. Formability of Al 8011 was studied and examined at various annealing temperatures using their bulk X-ray crystallographic textures and ODF plots. Forming limit diagrams, void coalescence parameters and crystallographic textures were correlated with normal anisotropy of the sheet metals annealed at different temperatures. (C) 2013 Politechnika Wroclawska. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Resumo:
This paper highlights the role of globular microstructure on the weldability of semi-solid processed aluminum alloys via high temperature flow behavior. The investigation was carried out on the joining of thixocast A356 aluminum alloy components by friction welding. A thermomechanical model was developed to predict the temperature and stress distributions, as well as to identify the suitable and safe range of parameters. Good comparisons between numerical and experimental results were observed. In addition, metallographic examinations and hardness and tensile tests of the welded samples were carried out. It was found that the tensile strength of the joint is higher than the tensile strength of the parent material for the optimum set of parameters. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A sound weld was obtained between 2024-T3 Al alloy and AZ31B-O Mg alloy dissimilar metal plates of 5 mm thickness, at a rotational speed of 300 rev min(-1) and at a welding speed of 50 mm min(-1). One of the parameter studied was, the effect of interface offset variation, on the quality and properties of the welded samples and on the thickness of intermetallic layer formed in the welded samples. The intermetallic layer at the midst of the weld volume contains intermetallic compounds Al12Mg17 and Al3Mg2. Highest tensile strength of 106.86 MPa, corresponding tensile joint efficiency of 44.52% and corresponding elongation 1.33% were obtained for the tensile sample, with interface offset of 0.66 mm from zero interface offset in retreating side and with approximate least intermetallic thickness of 1.2 mu m. Dissimilar friction stir welded joint samples had failed completely in brittle fracture mode; the position of tensile fracture was located at the midst of intermetallic layer, which had maximum hardness and minimum ductility. The nano hardness values fluctuate in the weld nugget owing to dynamic recrystallization of alloy materials and formation of brittle intermetallic compounds of alloy materials in the weld nugget; maximum hardness of 10.74 GPa occurred for the sample with least intermetallic thickness of 1.2 mu m. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 degrees C) associated with four different plate inclinations (30 degrees, 45 degrees, 60 degrees and 75 degrees). Melt pouring temperature of 625 degrees C with plate inclination of 60 degrees shows fine and globular microstructures and it is the optimum.
Resumo:
The AA5086 aluminum alloy sheets with different starting textures were subjected to shock wave deformation with an input impulse of similar to 0.2 Ns. Microstructural examination indicate no significant change in grain size; however, the evolution of substructure manifesting intra-granular misorientation was evident. The improvement in hardness indicates the absence of recovery and strain hardening during shock deformation. Shock deformed samples show characteristic texture evolution with high Brass {110}< 112 > component. The study demonstrates the viability of high velocity forming of AA5086 aluminum alloy sheet using shock wave. (C) 2014 Elsevier B.V. All rights reserved.