416 resultados para Aluminium base alloys
Resumo:
An investigation of the phase transitions at high pressures in the alums mentioned in the title has been carried out using EPR of the Cr3+ ion (at the trivalent metal ion site). It is observed that at ambient as well as at high pressures there is a change of slope in the linear variations of the zero field splitting with temperature and that the low temperature phase is characterised by a large number of lines in the EPR spectra. The transition temperature shows a large positive shift with pressure, for both the alums. All these facts are explained in terms of our model of the origin of the trigonal field at the trivalent metal ion site as well as the details of the motion of NH4+ ion.
Resumo:
The effect of corundum particle content on the wear of aluminium was studied. Composites of different corundum contents were tested for their wear characteristics. Hardness and density measurements were made on specimens before and after test. Specimens were examined by scanning electron microscopy in the as-compacted, sintered and worn states. The wear decreased as the oxide content increased, showing an optimum value at a composition range of 25 wt.%–35 wt.% of corundum. The mechanism of reinforcement and its effect on the operative wear mode are discussed.
Resumo:
The scanning thermogram of a block sample of a double-base propellant shows a shoulder around 200°C which is not observed in a powder sample of the sample propellant. The heat of decomposition was also found to be different In the two cases. Product analysis and activation energy calculations show that nitroglycerine un dergoes decomposition in the block sample, whereas it vaporizes in the powder sample.
Resumo:
Abstract is not available.
Resumo:
Recent studies (I-7) clearly indicate a strong dependence of fatigue threshold parameter, A K on grain size in several alloy systems. Attempts to explain these observations on the basis of crat~tortuosity (1,8), fracture surface roughness (5,9) and crack closure (6) appear to present a fairly clear picture of the mechanisms that cause a reduction in crack growth rates at threshold. In general, it has been shown that coarse grained microstructures exhibit higher fatigue threshold in low carbon steels (1,5) aluminium alloys (7) and titanium alloys (6). In spite of these observations, there exists (10-1#) considerable uncertainity about the manner in which the AK~L depends on prior austenitic grain size in quenched and tempered steels. Studies in quenched and tempered steels demonstrating both an increase (3,12,14) as well as a decrease (11,12) in AKth with an increase in prior austenitic grain size can be sought to illustrate this point. Occasionally , the absence of any sensitivity of AKth to the variations in prior austenitJc grain size has also been reported (11,13). While a few investigators (5-7) comfortably rationalised the grain size effects on AK~L on the basis of crack closure by a comparison in terms of the closure-free component of the thresho~Ifc~, AK -f such an approach has yet to be extended to high strength steels, An attempt has been made in t~et ,pthrg sent study to explai. n the effect of pri, or austeniti.c grain size on &Kth on the basis of crack closure measurements in a high strength steel.
Resumo:
A numerical study on columnar-to-equiaxed transition (CET) during directional solidification of binary alloys is presented using a macroscopic solidification model. The position of CET is predicted numerically using a critical cooling rate criterion reported in literature. The macroscopic solidification model takes into account movement of solid phase due to buoyancy, and drag effect on the moving solid phase because of fluid motion. The model is applied to simulate the solidification process for binary alloys (Sn-Pb) and to estimate solidification parameters such as position of the liquidus, velocity of the liquidus isotherm, temperature gradient ahead of the liquidus, and cooling rate at the liquidus. Solidification phenomena under two cooling configurations are studied: one without melt convection and the other involvin thermosolutal convection. The numerically predicted positions of CET compare well with those of experiments reported in literature. Melt convection results in higher cooling rate, higher liquidus isotherm velocities, and stimulation of occurrence of CET in comparison to the nonconvecting case. The movement of solid phase aids further the process of CET. With a fixed solid phase, the occurrence of CET based on the same critical cooling rate is delayed and it occurs at a greater distance from the chill.
Resumo:
The effect of corundum particle content on the wear of aluminium was studied. Composites of different corundum contents were tested for their wear characteristics. Hardness and density measurements were made on specimens before and after test. Specimens were examined by scanning electron microscopy in the as-compacted, sintered and worn states. The wear decreased as the oxide content increased, showing an optimum value at a composition range of 25 wt.%–35 wt.% of corundum. The mechanism of reinforcement and its effect on the operative wear mode are discussed.
Resumo:
The metastable vacancy ordered phases observed in aluminium transition metal alloys on rapid solidification or vapour deposition can be considered as a periodic arrangement of a truncated quasiperiodic string based on the Fibonacci sequence along the left angle bracket111right-pointing angle bracket stacking direction of the original CsCl cell. Using the projection formalism developed in the context of quasicrystals, the diffraction patterns of the vacancy ordered phases are calculated for both commensurate and incommensurate projection from a periodic cubic cell in four dimensions. These are compared with experimentally observed patterns. It is shown that at increasingly longer periodicity the patterns from commensurate crystals become indistinguishable from the truly quasiperiodic one. It is suggested that there is a strong link between vacancy ordered phases and quasicrystals.
Resumo:
Abstract is not available.
Resumo:
The low cycle fatigue behaviour of precipitation strengthened nickel-base superalloy 720Li containing a low concentration of interstitial carbon and boron was studied at 25, 400 and 650 degrees C. Cyclic stress response at all temperatures was stable under fully reversed constant total strain amplitude (Delta epsilon/2) when Delta epsilon/2 <= 0.6%. At Delta epsilon/2 > 0.6%, cyclic hardening was followed by softening, until fracture at 25 and 650 degrees C. At 400 degrees C, however, cyclic stress plateaued after initial hardening. Dislocation-dislocation interactions and precipitate shearing were the micromechanisms responsible for the cyclic hardening and softening, respectively. The number of reversals to failure vs. plastic strain amplitude plot exhibits a bilinear Coffin-Manson relation. Transmission electron microscopy substructures revealed that planar slip was the major deformation mode under the conditions examined. However, differences in its distribution were observed to be the cause for the bilinearity in fatigue lives. The presence of fine deformation twins at low Delta epsilon/2 at 650 degrees C suggests the role of twinning in homogenization of cyclic deformation.
Resumo:
Irreversible, Pressure induced, quasicrystal-to-crystal transitions are observed for the first time in melt spun alloys at 4.9 GPa for Al 78 Mn22 and 9.3 GPa for Al86 Mn14 by monitoring the electrical resistivities of these alloys as a function of pressure. Electron diffraction and x-ray measurements are used to show that these quasicrystalline phases have icosohedral point group symmetry. The crystalline phases which appear at high pressures are identified as h.c.p. for Al78 Mn22 and orthorhombic for Al86 Mn14.
Resumo:
Methanol adsorbs molecularly on the surfaces of Cu–Pd alloys at low temperatures and transforms to CH3O or CO on warming, depending upon the alloy composition. On oxygen presorbed Cu–Pd alloy surfaces, adsorption of methanol gives rise to H2O and H2CO. CH3OH adsorbed molecularly on the surfaces of Cu–Au alloys and CH3O is formed only at relatively high temperatures.
Resumo:
The participation of aluminum in the decomposition reaction of ammonium perchlorate (AP) is enhanced if magnesium is added—either as a mixture of Al and Mg powders or as an alloy of Mg in Al. The differential thermal analyses of the compositions show a sensitization in the temperatures of decomposition, as well as increase in the heat of reaction. The AP-Mg and Ap-(Mg---Li) alloy pellets also show increased reactivity. The burning rates of AP-(Al-10% Mg) alloy pellets increase with increase in the alloy content, while calorimetric values peak at 40% alloy content. The combustion product gases of AP-40% (Al-10% Mg) alloy contain large quantities of hydrogen.
Resumo:
A pin-on-disc test configuration has been used to examine the formation of the strain-hardened projection, or wear lips, especially at the trailing edge of the pin during dry sliding of aluminium alloys against steel discs. The mechanism of formation of such wear lips is studied with the aid of optical and electron microscopes. The plastic deformation of the pin, growth and eventual removal of the wear lip as wear debris are elucidated. The size and shape of the wear lips in pins of different shapes, i.e. square, rectangular, triangular and circular cross-sections, are described.