139 resultados para Alkali lands
Resumo:
Glasses have been prepared by conventional quenching techniques in the ternary sulphate system KzSO4-Na2SO4-ZnSO4, in the range 30-80 % ZnS04. The proportions of alkali sulphates in the glass have been varied widely. The glass formation region has been delineated and densities, refractive indices and microhardnesses have been measured. The heat capacities of the glasses have been measured over a wide range of temperature by differential scanning calorimetry. The effect of composition on molar volume, molar polarization and glass transition have been explained on the basis of a random close-packing model.
Resumo:
High resolution electron microscopic (HREM) investigation of potassiumbeta-alumina and the related gallate and ferrite has revealed that whereas the aluminate and gallate are highly disordered, consisting of random sequence ofbeta andbetaPrime units, the ferrite is more ordered. The aluminate and gallate are sensitive to electron beam irradiation exhibiting beam-induced damage similar to sodiumbetaPrime-alumina. Significantly, the ferrite is beamstable, the difference in behaviour amongst these related oxides arising from the different mechanisms by which alkali metal nonstoichiometry is accommodated. Barium hexaaluminate and hexaferrite are both highly ordered; specimens prepared by the barium borate flux method exhibit a new radic3a×radic3a superstructure of the hexagonal magnetoplumbite cell.
Resumo:
35S incorporation studies showed that Candida tropicalis tRNA contained two thionucleosides, one of which was identified as 5-methyl-2-thiouridine. The other thionucleoside was alkali labile, and it appeared to be an ester. Pulse-chase experiments suggested that the two thionucleosides were structurally related. 5-Methyl-2-thiouridine was present in one of the lysine tRNAs. This is the first report of the presence of this nucleoside in a yeast tRNA.
Resumo:
a,a-Trehalose induced a rapid blackening of the terminal 2.5-centimete region of excised Cuscuta relexa Roxb. vine. The incorporation of radioactivite from [I'C]glucose into alkali-insoluble fraction of shoot tip was markedly inhibited by 12 hours of trehalose feeding to an excised vine. This inhibition was confied to the apical segment of the vine in which cell elongation occurred. The rate of blackening of shoot tip explants was hastened by the addition of gibberellic acid A3, which promoted elongationgrowth of isolated Cuscuta shoot tips. The symptom of trehalose toxicity was duplicated by 2-deoxygucose, which has been shown to ba potent inhibitor of ceD wall synthesis in yeast. The observations suggest that trehalose interferes with the synthesis of ceDl wail polysaccharides, the chief component of which was presumed to be cellulose.
Resumo:
Phase diagrams for Tm2O3-H2O-CO2. Yb2O3-H2O-CO2 and Lu2O3-H2O-CO2 systems at 650 and 1300 bars have been investigated in the temperature range of 100–800°C. The phase diagrams are far more complex than those for the lighter lanthanides. The stable phases are Ln(OH)3, Ln2(CO3)3.3H2O (tengerite phase), orthorhombic-LnOHCO3, hexagonal-Ln2O2CO3. LnOOH and cubic-Ln2O3. Ln(OH)3 is stable only at very low partial pressures of CO2. Additional phases stabilised are Ln2O(OH)2CO3and Ln6(OH)4(CO3)7 which are absent in lighter lanthanide systems. Other phases, isolated in the presence of minor alkali impurities, are Ln6O2(OH)8(CO3)3. Ln4(OH)6(CO3)3 and Ln12O7(OH)10,(CO3)6. The chemical equilibria prevailing in these hydrothermal systems may be best explained on the basis of the four-fold classification of lanthanides.
Resumo:
A simple semiempirical quantum chemical approach (Extended Huckel Theory) is shown to give a reasonable description of the electronic structural aspects of chemisorption on the mercury model surface. Chemisorptive interaction of alkali metal atoms and cations, halogen atoms and anions, and water molecules with a charge-neutralized hexagonal close-packed cluster of seven Hg atoms is studied. Adsorption of H, C, N and O atoms on the same model cluster is studied for comparison with earlier work. Chemisorption energies, charge transfer, interaction distance and hydration effects are discussed and compared with experimental results where available.
Resumo:
Several alkylidene malononitriles (1b,1d,1e,2b and4b) and alkylidene cyanoacetates (1a,2a and4a) studied exhibit a long wavelength UV absorption band around 355 nm which shows a hyperchromic effect in the presence of ethanolic alkali. This band has been assigned to the ketenimine tautomer (5). Addition of water to1b,1e and2b gives the corresponding pyridine diols (7a,7b and8a) respectively. Similarly, addition of ethanol to1e and2b gave the corresponding ethoxypyridine derivatives (7c and8b). Mechanism of formation of these compounds is discussed. Structures, as well as mechanism of formation of1c,7c and10 obtained from1b,1e and2b respectively on standing at room temperature are also discussed.
Resumo:
Several alkylidene malononitriles (1b,1d,1e,2b and4b) and alkylidene cyanoacetates (1a,2a and4a) studied exhibit a long wavelength UV absorption band around 355 nm which shows a hyperchromic effect in the presence of ethanolic alkali. This band has been assigned to the ketenimine tautomer (5). Addition of water to1b,1e and2b gives the corresponding pyridine diols (7a,7b and8a) respectively. Similarly, addition of ethanol to1e and2b gave the corresponding ethoxypyridine derivatives (7c and8b). Mechanism of formation of these compounds is discussed. Structures, as well as mechanism of formation of1c,7c and10 obtained from1b,1e and2b respectively on standing at room temperature are also discussed.
Resumo:
A new analogue of vitamin A, viz., retinoic acid anhydride was prepared, for the first time, by the action of thionyl chloride on retinoic acid in benzene containing pyridine. The amhydride was charcterised by its chromatographic properties, elemental analysis, ultraviolet absorption, infrared and nuclear magnetic resonance spectral characteristics. The compound could be readily hydrolysed to retinoic acid both by acid and alkali treatments and reduced by lithium aluminium hydride to vitamin A alcohol (retinol). The spectral changes with antimony trichloride reagent were similar to those observed for retinoic acid. The metabolism of retinoic acid anhydride was found to be similar to that of retinoic acic. When administered either orally or intraperitoneally, the compound promotes growth in vitamin A-deficient rats. Time-course experiments revealed that retinoic acid anhydride is converted into retinoic acid by non-enzymatic hydrolysis and thereby exerts its biological activity. The biopotency of the anhydride was found to be nearly the same as that of the acid. A new method of preparing esters of retinoic acid employing retinoic acid anhydride as an intermediate, has been described.
Resumo:
Two methods were employed to measure the rate of ribonucleic acid (RNA) chain growth in vivo in Mycobacterium tuberculosis H37Rv cultures growing in Sauton medium at 37 degrees C, with a generation time of 10 h. In the first, the bacteria were allowed to assimilate [3H]uracil or [3H]guanine into their RNA for short time periods. The RNA was then extracted and hydrolyzed with alkali, and the radioactivity in the resulting nucleotides and nucleosides was measured. The data obtained by this method allowed the calculation of the individual nucleotide step times during the growth of RNA chains, from which the average rate of RNA chain elongation was estimated to be about 4 nucleotides per s. The second method employed the antibiotic rifampin, which specifically inhibits the initiation of RNA synthesis without interfering with the elongation and completion of nascent RNA chains. Usint this method, the transcription time of the 16S, 23S, and 5S ribosomal RNA genes was estimated to be 7.6 min, which corresponds to a ribosomal RNA chain growth rate of 10 nucleotides per s.
Resumo:
Polyvanadate solutions obtained by extracting vanadium pentoxide with dilute alkali over a period of several hours contained increasing amounts of decavanadate as characterized by NMR and ir spectra. Those solutions having a metavanadate:decavanadate ratio in the range of 1-5 showed maximum stimulation of NADH oxidation by rat liver plasma membranes. Reduction of decavanadate, but not metavanadate, was obtained only in the presence of the plasma membrane enzyme system. High simulation of activity of NADH oxidation was obtained with a mixture of the two forms of vanadate and this further increased on lowering the pH. Addition of increasing concentrations of decavanadate to metavanadate and vice versa increased the stimulatory activity, reaching a maximum when the metavanadate:decavanadate ratio was in the range of 1-5. Increased stimulatory activity can also be obtained by reaching these ratios by conversion of decavanadate to metavanadate by alkaline phosphate degradation, and of metavanadate to decavanadate by acidification. These studies show for the first time that both deca and meta forms of vanadate present in polyvanadate solutions are needed for maximum activity of NADH oxidation.
Resumo:
Various metal salts (Na, K, Rb, and NH4) of monochloro acetic acid were prepared and the Cl-35 nuclear quadrupole resonance frequencies were measured at room temperature. A comparative study of nuclear quadrupole resonance frequencies of monochloro acetic acid and its metal salts is carried out. The frequency shifts obtained in the respective metal chloroacetates are used to estimate the changes in the ionicity of C-Cl bond. Further, the changes in the ionicity of C-Cl bond were used to estimate the percentage of intra-molecular charge transfer between respective cation-anion of the metal salts of chloro acetic acid. The nuclear quadrupole resonance frequency is found to decrease with increasing ionicity of the alkali metal ion.
Resumo:
Rinderpest virus (RPV) large (L) protein is an integral part of the ribonucleoprotein (RNP) complex of the virus that is responsible for transcription and replication of the genome. Previously, we have shown that recombinant L protein coexpressed along with P protein (as the L-P complex) catalyses the synthesis of all viral mRNAs in vitro and the abundance of mRNAs follows a gradient of polarity, similar to the occurrence in vivo. In the present work, we demonstrate that the viral mRNAs synthesized in vitro by the recombinant L or purified RNP are capped and methylated at the N-7 guanine position. RNP from the purified virions, as well as recombinant L protein, shows RNA triphosphatase (RTPase) and guanylyl transferase (GT) activities. L protein present in the RNP complex catalyses the removal of gamma-phosphate from triphosphate-ended 25 nt RNA generated in vitro representing the viral N-terminal mRNA 5' sequence. The L protein forms a covalent enzyme-guanylate intermediate with the GMP moiety of GTP, whose formation is inhibited by the addition of pyrophosphate; thus, it exhibits characteristics of cellular GTs. The covalent bond between the enzyme and nucleotide is acid labile and alkali stable, indicating the presence of phosphoamide linkage. The C-terminal region (aa 1717-2183) of RPV L protein alone exhibits the first step of GT activity needed to form a covalent complex with GMP, though it lacks the ability to transfer GMP to substrate RNA. Here, we describe the biochemical characterization of the newly found RTPase/GT activity of L protein.
Resumo:
The linear spin-1/2 Heisenberg antiferromagnet with exchanges J(1) and J(2) between first and second neighbors has a bond-order wave (BOW) phase that starts at the fluid-dimer transition at J(2)/J(1)=0.2411 and is particularly simple at J(2)/J(1)=1/2. The BOW phase has a doubly degenerate singlet ground state, broken inversion symmetry, and a finite-energy gap E-m to the lowest-triplet state. The interval 0.4 < J(2)/J(1) < 1.0 has large E-m and small finite-size corrections. Exact solutions are presented up to N = 28 spins with either periodic or open boundary conditions and for thermodynamics up to N = 18. The elementary excitations of the BOW phase with large E-m are topological spin-1/2 solitons that separate BOWs with opposite phase in a regular array of spins. The molar spin susceptibility chi(M)(T) is exponentially small for T << E-m and increases nearly linearly with T to a broad maximum. J(1) and J(2) spin chains approximate the magnetic properties of the BOW phase of Hubbard-type models and provide a starting point for modeling alkali-tetracyanoquinodimethane salts.
Resumo:
A low temperature polyol process, based on glycolaldehyde mediated partial reduction of FeCl3 center dot 6H(2)O at 120 degrees C in the presence of sodium acetate as an alkali source and 2,2'-(ethylenedioxy)-bis-(ethylamine) as an electrostatic stabilizer has been used for the gram-scale preparation of biocompatible, water-dispersible, amine functionalized magnetite nanoparticles (MNPs) with an average diameter of 6 +/- 0.75 nm. With a reasonably high magnetization (37.8 e.m.u.) and amine groups on the outer surface of the nanoparticles, we demonstrated the magnetic separation and concentration implications of these ultrasmall particles in immunoassay. MRI studies indicated that these nanoparticles had the desired relaxivity for T-2 contrast enhancement in vivo. In vitro biocompatibility, cell uptake and MR imaging studies established that these nanoparticles were safe in clinical dosages and by virtue of their ultrasmall sizes and positively charged surfaces could be easily internalized by cancer cells. All these positive attributes make these functional nanoparticles a promising platform for further in vitro and in vivo evaluations.