147 resultados para Advanced signal processing
Resumo:
This paper deals with low maximum-likelihood (ML)-decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2 x 2) and the 4 transmit antenna, 2 receive antenna (4 x 2) MIMO systems. Presently, the best known STBC for the 2 2 system is the Golden code and that for the 4 x 2 system is the DjABBA code. Following the approach by Biglieri, Hong, and Viterbo, a new STBC is presented in this paper for the 2 x 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be information-lossless and diversity-multiplexing gain (DMG) tradeoff optimal. This design procedure is then extended to the 4 x 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of for square QAM of size. In this paper, a scheme that reduces its ML-decoding complexity to M-2 root M is presented.
Resumo:
In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.
Resumo:
We address the issue of noise robustness of reconstruction techniques for frequency-domain optical-coherence tomography (FDOCT). We consider three reconstruction techniques: Fourier, iterative phase recovery, and cepstral techniques. We characterize the reconstructions in terms of their statistical bias and variance and obtain approximate analytical expressions under the assumption of small noise. We also perform Monte Carlo analyses and show that the experimental results are in agreement with the theoretical predictions. It turns out that the iterative and cepstral techniques yield reconstructions with a smaller bias than the Fourier method. The three techniques, however, have identical variance profiles, and their consistency increases linearly as a function of the signal-to-noise ratio.
Resumo:
We present a signal processing approach using discrete wavelet transform (DWT) for the generation of complex synthetic aperture radar (SAR) images at an arbitrary number of dyadic scales of resolution. The method is computationally efficient and is free from significant system-imposed limitations present in traditional subaperture-based multiresolution image formation. Problems due to aliasing associated with biorthogonal decomposition of the complex signals are addressed. The lifting scheme of DWT is adapted to handle complex signal approximations and employed to further enhance the computational efficiency. Multiresolution SAR images formed by the proposed method are presented.
Resumo:
We present a motion detection algorithm which detects direction of motion at sufficient number of points and thus segregates the edge image into clusters of coherently moving points. Unlike most algorithms for motion analysis, we do not estimate magnitude of velocity vectors or obtain dense motion maps. The motivation is that motion direction information at a number of points seems to be sufficient to evoke perception of motion and hence should be useful in many image processing tasks requiring motion analysis. The algorithm essentially updates the motion at previous time using the current image frame as input in a dynamic fashion. One of the novel features of the algorithm is the use of some feedback mechanism for evidence segregation. This kind of motion analysis can identify regions in the image that are moving together coherently, and such information could be sufficient for many applications that utilize motion such as segmentation, compression, and tracking. We present an algorithm for tracking objects using our motion information to demonstrate the potential of this motion detection algorithm.
Resumo:
We derive expressions for convolution multiplication properties of discrete cosine transform II (DCT II) starting from equivalent discrete Fourier transform (DFT) representations. Using these expressions, a method for implementing linear filtering through block convolution in the DCT II domain is presented. For the case of nonsymmetric impulse response, additional discrete sine transform II (DST II) is required for implementing the filter in DCT II domain, where as for a symmetric impulse response, the additional transform is not required. Comparison with recently proposed circular convolution technique in DCT II domain shows that the proposed new method is computationally more efficient.
Resumo:
In our earlier work [1], we employed MVDR (minimum variance distortionless response) based spectral estimation instead of modified-linear prediction method [2] in pitch modification. Here, we use the Bauer method of MVDR spectral factorization, leading to a causal inverse filter rather than a noncausal filter setup with MVDR spectral estimation [1]. Further, this is employed to obtain source (or residual) signal from pitch synchronous speech frames. The residual signal is resampled using DCT/IDCT depending on the target pitch scale factor. Finally, forward filters realized from the above factorization are used to get pitch modified speech. The modified speech is evaluated subjectively by 10 listeners and mean opinion scores (MOS) are tabulated. Further, modified bark spectral distortion measure is also computed for objective evaluation of performance. We find that the proposed algorithm performs better compared to time domain pitch synchronous overlap [3] and modified-LP method [2]. A good MOS score is achieved with the proposed algorithm compared to [1] with a causal inverse and forward filter setup.
Resumo:
Visual tracking has been a challenging problem in computer vision over the decades. The applications of Visual Tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Mean-shift (MS) tracker, which gained more attention recently, is known for tracking objects in a cluttered environment and its low computational complexity. The major problem encountered in histogram-based MS is its inability to track rapidly moving objects. In order to track fast moving objects, we propose a new robust mean-shift tracker that uses both spatial similarity measure and color histogram-based similarity measure. The inability of MS tracker to handle large displacements is circumvented by the spatial similarity-based tracking module, which lacks robustness to object's appearance change. The performance of the proposed tracker is better than the individual trackers for tracking fast-moving objects with better accuracy.
Resumo:
We propose a simple and energy efficient distributed change detection scheme for sensor networks based on Page's parametric CUSUM algorithm. The sensor observations are IID over time and across the sensors conditioned on the change variable. Each sensor runs CUSUM and transmits only when the CUSUM is above some threshold. The transmissions from the sensors are fused at the physical layer. The channel is modeled as a multiple access channel (MAC) corrupted with IID noise. The fusion center which is the global decision maker, performs another CUSUM to detect the change. We provide the analysis and simulation results for our scheme and compare the performance with an existing scheme which ensures energy efficiency via optimal power selection.
Resumo:
We address the issue of rate-distortion (R/D) performance optimality of the recently proposed switched split vector quantization (SSVQ) method. The distribution of the source is modeled using Gaussian mixture density and thus, the non-parametric SSVQ is analyzed in a parametric model based framework for achieving optimum R/D performance. Using high rate quantization theory, we derive the optimum bit allocation formulae for the intra-cluster split vector quantizer (SVQ) and the inter-cluster switching. For the wide-band speech line spectrum frequency (LSF) parameter quantization, it is shown that the Gaussian mixture model (GMM) based parametric SSVQ method provides 1 bit/vector advantage over the non-parametric SSVQ method.
Resumo:
We propose a new weighting function which is computationally simple and an approximation to the theoretically derived optimum weighting function shown in the literature. The proposed weighting function is perceptually motivated and provides improved vector quantization performance compared to several weighting functions proposed so far, for line spectrum frequency (LSF) parameter quantization of both clean and noisy speech data.
Resumo:
The goal of this study is the multi-mode structural vibration control in the composite fin-tip of an aircraft. Structural model of the composite fin-tip with surface bonded piezoelectric actuators is developed using the finite element method. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes accurately. A model order reduction technique is employed for reducing the finite element structural matrices before developing the controller. Particle swarm based evolutionary optimization technique is used for optimal placement of piezoelectric patch actuators and accelerometer sensors to suppress vibration. H{infty} based active vibration controllers are designed directly in the discrete domain and implemented using dSpace® (DS-1005) electronic signal processing boards. Significant vibration suppression in the multiple bending modes of interest is experimentally demonstrated for sinusoidal and band limited white noise forcing functions.
Resumo:
We explore the fuse of information on co-occurrence of domains in multi-domain proteins in predicting protein-protein interactions. The basic premise of our work is the assumption that domains co-occurring in a polypeptide chain undergo either structural or functional interactions among themselves. In this study we use a template dataset of domains in multidomain proteins and predict protein-protein interactions in a target organism. We note that maximum number of correct predictions of interacting protein domain families (158) is made in S. cerevisiae when the dataset of closely related organisms is used as the template followed by the more diverse dataset of bacterial proteins (48) and a dataset of randomly chosen proteins (23). We conclude that use of multi-domain information from organisms closely-related to the target can aid prediction of interacting protein families.
Resumo:
In this paper, we consider robust joint linear precoder/receive filter designs for multiuser multi-input multi-output (MIMO) downlink that minimize the sum mean square error (SMSE) in the presence of imperfect channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. We consider a stochastic error (SE) model and a norm-bounded error (NBE) model for the CSIT error. In the case of CSIT error following SE model, we compute the desired downlink precoder/receive filter matrices by solving the simpler uplink problem by exploiting the uplink-downlink duality for the MSE region. In the case of the CSIT error following the NBE model, we consider the worst-case SMSE as the objective function, and propose an iterative algorithm for the robust transceiver design. The robustness of the proposed algorithms to imperfections in CSIT is illustrated through simulations.
Resumo:
This paper presents a modified design method for linear transconductor circuit in 130 nm CMOS technology to improve linearity, robustness against process induced threshold voltage variability and reduce harmonic distortion. Source follower in the adaptively biased differential pair (ABDP) linear transconductor circuit is replaced with flipped voltage follower to improve the efficiency of the tail current source, which is connected to a conventional differential pair. The simulation results show the performance of the modified circuit also has better speed, noise performance and common mode rejection ratio compared to the ABDP circuit.