124 resultados para Action logic
Use of gonadotropin and steroid hormone antibodies in studying specific hormone action in the monkey
Resumo:
Test results of 24 reinforced concrete wall panels in two-way action (i.e., supported on all the four sides) and subjected to in-plane vertical load are presented. The load is applied at an eccentricity to represent possible accidental eccentricity that occurs in practice due to constructional imperfections. Influences of aspect ratio, thinness ratio, slendemess ratio, vertical steel, and horizontal steel on the ultimate load are studied. Two equations are proposed to predict the ultimate load carried by the panels. The first equation is empirical and is arrived at from trial and error fitting with test data. The second equation is semi-empirical and is developed from a modification of the buckling strength of thin rectangular plates. Both the equations are formulated so as to give a safe prediction of a large portion of ultimate strength test results. Also, ultimate load cracking load and lateral deflections of identical panels in two-way action (all four sides supported) and oneway action (top and bottom sides only supported) are compared.
Resumo:
Coastal lagoons are complex ecosystems exhibiting a high degree of non-linearity in the distribution and exchange of nutrients dissolved in the water column due to their spatio-temporal characteristics. This factor has a direct influence on the concentrations of chlorophyll-a, an indicator of the primary productivity in the water bodies as lakes and lagoons. Moreover the seasonal variability in the characteristics of large-scale basins further contributes to the uncertainties in the data on the physico-chemical and biological characteristics of the lagoons. Considering the above, modelling the distributions of the nutrients with respect to the chlorophyll-concentrations, hence requires an effective approach which will appropriately account for the non-linearity of the ecosystem as well as the uncertainties in the available data. In the present investigation, fuzzy logic was used to develop a new model of the primary production for Pulicat lagoon, Southeast coast of India. Multiple regression analysis revealed that the concentrations of chlorophyll-a in the lagoon was highly influenced by the dissolved concentrations of nitrate, nitrites and phosphorous to different extents over different seasons and years. A high degree of agreement was obtained between the actual field values and those predicted by the new fuzzy model (d = 0.881 to 0.788) for the years 2005 and 2006, illustrating the efficiency of the model in predicting the values of chlorophyll-a in the lagoon.
Resumo:
The increasing variability in device leakage has made the design of keepers for wide OR structures a challenging task. The conventional feedback keepers (CONV) can no longer improve the performance of wide dynamic gates for the future technologies. In this paper, we propose an adaptive keeper technique called rate sensing keeper (RSK) that enables faster switching and tracks the variation across different process corners. It can switch upto 1.9x faster (for 20 legs) than CONV and can scale upto 32 legs as against 20 legs for CONV in a 130-nm 1.2-V process. The delay tracking is within 8% across the different process corners. We demonstrate the circuit operation of RSK using a 32 x 8 register file implemented in an industrial 130-nm 1.2-V CMOS process. The performance of individual dynamic logic gates are also evaluated on chip for various keeper techniques. We show that the RSK technique gives superior performance compared to the other alternatives such as Conditional Keeper (CKP) and current mirror-based keeper (LCR).
Resumo:
It is found that the inclusion of higher derivative terms in the gravitational action along with concepts of phase transition and spontaneous symmetry breaking leads to some novel consequence. The Ricci scalar plays the dual role, like a physical field as well as a geometrical field. One gets Klein-Gordon equation for the emerging field and the corresponding quanta of geometry are called Riccions. For the early universe the model removes singularity along with inflation. In higher dimensional gravity the Riccions can break into spin half particle and antiparticle along with breaking of left-right symmetry. Most tantalizing consequences is the emergence of the physical universe from the geometry in the extreme past. Riccions can Bose condense and may account for the dark matter.
Resumo:
Indian logic has a long history. It somewhat covers the domains of two of the six schools (darsanas) of Indian philosophy, namely, Nyaya and Vaisesika. The generally accepted definition of Indian logic over the ages is the science which ascertains valid knowledge either by means of six senses or by means of the five members of the syllogism. In other words, perception and inference constitute the subject matter of logic. The science of logic evolved in India through three ages: the ancient, the medieval and the modern, spanning almost thirty centuries. Advances in Computer Science, in particular, in Artificial Intelligence have got researchers in these areas interested in the basic problems of language, logic and cognition in the past three decades. In the 1980s, Artificial Intelligence has evolved into knowledge-based and intelligent system design, and the knowledge base and inference engine have become standard subsystems of an intelligent system. One of the important issues in the design of such systems is knowledge acquisition from humans who are experts in a branch of learning (such as medicine or law) and transferring that knowledge to a computing system. The second important issue in such systems is the validation of the knowledge base of the system i.e. ensuring that the knowledge is complete and consistent. It is in this context that comparative study of Indian logic with recent theories of logic, language and knowledge engineering will help the computer scientist understand the deeper implications of the terms and concepts he is currently using and attempting to develop.
Resumo:
Formal specification is vital to the development of distributed real-time systems as these systems are inherently complex and safety-critical. It is widely acknowledged that formal specification and automatic analysis of specifications can significantly increase system reliability. Although a number of specification techniques for real-time systems have been reported in the literature, most of these formalisms do not adequately address to the constraints that the aspects of 'distribution' and 'real-time' impose on specifications. Further, an automatic verification tool is necessary to reduce human errors in the reasoning process. In this regard, this paper is an attempt towards the development of a novel executable specification language for distributed real-time systems. First, we give a precise characterization of the syntax and semantics of DL. Subsequently, we discuss the problems of model checking, automatic verification of satisfiability of DL specifications, and testing conformance of event traces with DL specifications. Effective solutions to these problems are presented as extensions to the classical first-order tableau algorithm. The use of the proposed framework is illustrated by specifying a sample problem.
Resumo:
We analyze here the occurrence of antiferromagnetic (AFM) correlations in the half-filled Hubbard model in one and two space dimensions using a natural fermionic representation of the model and a newly proposed way of implementing the half-filling constraint. We find that our way of implementing the constraint is capable of enforcing it exactly already at the lowest levels of approximation. We discuss how to develop a systematic adiabatic expansion for the model and how Berry's phase contributions arise quite naturally from the adiabatic expansion. At low temperatures and in the continuum limit the model gets mapped onto an O(3) nonlinear sigma model (NLsigma). A topological, Wess-Zumino term is present in the effective action of the ID NLsigma as expected, while no topological terms are present in 2D. Some specific difficulties that arise in connection with the implementation of an adiabatic expansion scheme within a thermodynamic context are also discussed, and we hint at possible solutions.
Resumo:
The aim of logic synthesis is to produce circuits which satisfy the given boolean function while meeting timing constraints and requiring the minimum silicon area. Logic synthesis involves two steps namely logic decomposition and technology mapping. Existing methods treat the two as separate operation. The traditional approach is to minimize the number of literals without considering the target technology during the decomposition phase. The decomposed expressions are then mapped on to the target technology to optimize the area, Timing optimization is carried out subsequently, A new approach which treats logic decomposition and technology maping as a single operation is presented. The logic decomposition is based on the parameters of the target technology. The area and timing optimization is carried out during logic decomposition phase itself. Results using MCNC circuits are presented to show that this method produces circuits which are 38% faster while requiring 14% increase in area.
Resumo:
A framework based on the notion of "conflict-tolerance" was proposed in as a compositional methodology for developing and reasoning about systems that comprise multiple independent controllers. A central notion in this framework is that of a "conflict-tolerant" specification for a controller. In this work we propose a way of defining conflict-tolerant real-time specifications in Metric Interval Temporal Logic (MITL). We call our logic CT-MITL for Conflict-Tolerant MITL. We then give a clock optimal "delay-then-extend" construction for building a timed transition system for monitoring past-MITL formulas. We show how this monitoring transition system can be used to solve the associated verification and synthesis problems for CT-MITL.
Resumo:
Filtering methods are explored for removing noise from data while preserving sharp edges that many indicate a trend shift in gas turbine measurements. Linear filters are found to be have problems with removing noise while preserving features in the signal. The nonlinear hybrid median filter is found to accurately reproduce the root signal from noisy data. Simulated faulty data and fault-free gas path measurement data are passed through median filters and health residuals for the data set are created. The health residual is a scalar norm of the gas path measurement deltas and is used to partition the faulty engine from the healthy engine using fuzzy sets. The fuzzy detection system is developed and tested with noisy data and with filtered data. It is found from tests with simulated fault-free and faulty data that fuzzy trend shift detection based on filtered data is very accurate with no false alarms and negligible missed alarms.