85 resultados para AS160 PHOSPHORYLATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In plants, calcium-dependent protein kinases (CDPKs) are key intermediates in calcium-mediated signaling that couple changes in Ca2+ levels to a specific response. In the present study, we report the high-level soluble expression of calcium-dependent protein kinase1 from Cicer arietinum (CaCDPK1) in Escherichia coli. The expression of soluble CaCDPK1 was temperature dependent with a yield of 3-4 mg/l of bacterial culture. CaCDPK1 expressed as histidine-tag fusion protein was purified using Ni-NTA affinity chromatography till homogeneity. The recombinant CaCDPK1 protein exhibited both calcium-dependent autophosphorylation and substrate phosphorylation activities with a V (max) and K (m) value of 13.2 nmol/min/mg and 34.3 mu M, respectively, for histone III-S as substrate. Maximum autophosphorylation was seen only in the presence of calcium. Optimum temperature for autophosphorylation was found to be 37 A degrees C. The recombinant protein showed optimum pH range of 6-9. The role of autophosphorylation in substrate phosphorylation was investigated using histone III-S as exogenous substrate. Our results show that autophosphorylation happens before substrate phosphorylation and it happens via intra-molecular mechanism as the activity linearly depends on enzyme concentrations. Autophosphorylation enhances the kinase activity and reduces the lag phase of activation, and CaCDPK1 can utilize both ATP and GTP as phosphodonor but ATP is preferred than GTP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The success of AAV2 mediated hepatic gene transfer in human trials for diseases such as hemophilia has been hampered by a combination of low transduction efficiency and a robust immune response directed against these vectors. We have previously shown that AAV2 is targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal degradation machinery and modification of the serine(S)/threonine(T) kinase and lysine(K) targets on AAV capsid is beneficial. Thus targeted single mutations of S/T>A(S489A, S498A, T251A) and K>R (K532R) improved the efficiency of gene transfer in vivo as compared to wild type (WT)-AAV2 vectors (∼6-14 fold). In the present study, we evaluated if combined alteration of the phosphodegrons (PD), which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, improves further the gene transfer efficiency. Thus, we generated four multiple mutant vectors (PD: 1+3, S489A+K532R, PD: 1+3, S489A+K532R together with T251 residue which did not lie in any of the phosphodegrons but had shown increased transduction efficiency compared to the WT-AAV2 vector (∼6 fold) and was also conserved in 9 out of 10 AAV serotypes (AAV 1 to 10), PD: 1+3, S489A+K532R+S498A and a fourth combination of PD: 3, K532R+T251. We then evaluated them in vitro and in vivo and compared their gene transfer efficiency with either the WT-AAV2 or the best single mutant S489A-AAV2 vector. The novel multiple mutations on the AAV2 capsid did not affect the overall vector packaging efficiency. All the multiple AAV2 mutants showed superior transduction efficiency in HeLa cells in vitro when compared to either the WT (62-72% Vs 21%) or the single mutant S489A (62-72% Vs 50%) AAV2 vectors as demonstrated by FACS analysis (Fig. 1A). On hepatic gene transfer with 5x10^10 vgs per animal in C57BL/6 mice, all the multiple mutants showed increased transgene expression compared to either the WT-AAV2 (∼15-23 fold) or the S489A single mutant vector (∼2-3 fold) (Fig.1B and C). These novel multiple mutant AAV2 vectors also showed higher vector copy number in murine hepatocytes 4 weeks post transduction, as compared to the WT-AAV2 (∼5-6 Vs 1.4 vector copies/diploid genome) and further higher when compared to the single mutant S489A(∼5-6 fold Vs 3.8 fold) (Fig.1D). Further ongoing studies will demonstrate the therapeutic benefit of one or more of the multiple mutants vectors in preclinical models of hemophilia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Insulin like growth factor binding proteins modulate the mitogenic and pro survival effects of IGF. Elevated expression of IGFBP2 is associated with progression of tumors that include prostate, ovarian, glioma among others. Though implicated in the progression of breast cancer, the molecular mechanisms involved in IGFBP2 actions are not well defined. This study investigates the molecular targets and biological pathways targeted by IGFBP2 in breast cancer. Methods: Transcriptome analysis of breast tumor cells (BT474) with stable knockdown of IGFBP2 and breast tumors having differential expression of IGFBP2 by immunohistochemistry was performed using microarray. Differential gene expression was established using R-Bioconductor package. For validation, gene expression was determined by qPCR. Inhibitors of IGF1R and integrin pathway were utilized to study the mechanism of regulation of beta-catenin. Immunohistochemical and immunocytochemical staining was performed on breast tumors and experimental cells, respectively for beta-catenin and IGFBP2 expression. Results: Knockdown of IGFBP2 resulted in differential expression of 2067 up regulated and 2002 down regulated genes in breast cancer cells. Down regulated genes principally belong to cell cycle, DNA replication, repair, p53 signaling, oxidative phosphorylation, Wnt signaling. Whole genome expression analysis of breast tumors with or without IGFBP2 expression indicated changes in genes belonging to Focal adhesion, Map kinase and Wnt signaling pathways. Interestingly, IGFBP2 knockdown clones showed reduced expression of beta-catenin compared to control cells which was restored upon IGFBP2 re-expression. The regulation of beta-catenin by IGFBP2 was found to be IGF1R and integrin pathway dependent. Furthermore, IGFBP2 and beta-catenin are co-ordinately overexpressed in breast tumors and correlate with lymph node metastasis. Conclusion: This study highlights regulation of beta-catenin by IGFBP2 in breast cancer cells and most importantly, combined expression of IGFBP2 and beta-catenin is associated with lymph node metastasis of breast tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we determined the molecular mechanisms of how homocysteine differentially affects receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG) synthesis in the bone. The results showed that oxidative stress induced by homocysteine deranges insulin-sensitive FOXO1 and MAP kinase signaling cascades to decrease OPG and increase RANKL synthesis in osteoblast cultures. We observed that downregulation of insulin/FOXO1 and p38 MAP kinase signaling mechanisms due to phosphorylation of protein phosphatase 2 A (PP2A) was the key event that inhibited OPG synthesis in homocysteine-treated osteoblast cultures. siRNA knockdown experiments confirmed that FOXO1 is integral to OPG and p38 synthesis. Conversely homocysteine increased RANKL synthesis in osteoblasts through c-Jun/JNK MAP kinase signaling mechanisms independent of FOXO1. In the rat bone milieu, high-methionine diet-induced hyperhomocysteinemia lowered FOXO1 and OPG expression and increased synthesis of proresorptive and inflammatory cytokines such as RANKL, M-CSF, IL-1 alpha, IL-1 beta, G-CSF, GM-CSF, MIP-1 alpha, IFN-gamma, IL-17, and TNF-alpha. Such pathophysiological conditions were exacerbated by ovariectomy. Lowering the serum homocysteine level by a simultaneous supplementation with N-acetylcysteine improved OPG and FOXO1 expression and partially antagonized RANKL and proresorptive cytokine synthesis in the bone milieu. These results emphasize that hyperhomocysteinemia alters the redox regulatory mechanism in the osteoblast by activating PP2A and deranging FOXO1 and MAPK signaling cascades, eventually shifting the OPG:RANKL ratio toward increased osteoclast activity and decreased bone quality (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuroblastoma is the most common cancer in infants and fourth most common cancer in children. Despite recent advances in cancer treatments, the prognosis of stage-IV neuroblastoma patients continues to be dismal which warrant new pharmacotherapy. A novel tetracyclic condensed quinoline compound, 8-methoxypyrimido 4 `,5 `: 4,5] thieno(2,3-b) quinoline-4(3H)-one (MPTQ) is a structural analogue of an anticancer drug ellipticine and has been reported to posses anticancer property. Study on MPTQ on neuroblastoma cells is very limited and mechanisms related to its cytotoxicity on neuroblastoma cells are completely unknown. Here, we evaluated the anticancer property of MPTQ on mouse neuro 2a and human SH-SY5Y neuroblastoma cells and investigated the mechanisms underlying MPTQ-mediated neuro 2a cell death. MPTQ-mediated neuro 2a and SH-SY5Y cell deaths were found to be dose and time dependent. Moreover, MPTQ induced cell death reached approximately 99.8% and 90% in neuro 2a and SH-SY5Y cells respectively. Nuclear oligonucleosomal DNA fragmentation and Terminal dUTP Nick End Labelling assays indicated MPTQ-mediated neuro 2a cell death involved apoptosis. MPTQ-mediated apoptosis is associated with increased phosphorylation of p53 at Ser15 and Ser20 which correlates with the hyperphosphorylation of Ataxia-Telangiectasia mutated protein (ATM). Immunocytochemical analysis demonstrated the increased level of Bax protein in MPTQ treated neuro 2a cells. MPTQ-mediated apoptosis is also associated with increased activation of caspase-9, -3 and -7 but not caspase-2 and -8. Furthermore, increased level of caspase-3 and cleaved Poly ( ADP Ribose) polymerase were observed in the nucleus of MPTQ treated neuro 2a cells, suggesting the involvement of caspase-dependent intrinsic but not extrinsic apoptotic pathway. Increased nuclear translocation of apoptosis inducing factor suggests additional involvement of caspase-independent apoptosis pathway in MPTQ treated neuro 2a cells. Collectively, MPTQ-induced neuro 2a cell death is mediated by ATM and p53 activation, and Bax-mediated activation of caspase-dependent and caspase-independent mitochondrial apoptosis pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While phosphotyrosine modification is an established regulatory mechanism in eukaryotes, it is less well characterized in bacteria due to low prevalence. To gain insight into the extent and biological importance of tyrosine phosphorylation in Escherichia coli, we used immunoaffinity-based phosphotyrosine peptide enrichment combined with high resolution mass spectrometry analysis to comprehensively identify tyrosine phosphorylated proteins and accurately map phosphotyrosine sites. We identified a total of 512 unique phosphotyrosine sites on 342 proteins in E. coli K12 and the human pathogen enterohemorrhagic E. coli (EHEC) O157:H7, representing the largest phosphotyrosine proteome reported to date in bacteria. This large number of tyrosine phosphorylation sites allowed us to define five phosphotyrosine site motifs. Tyrosine phosphorylated proteins belong to various functional classes such as metabolism, gene expression and virulence. We demonstrate for the first time that proteins of a type III secretion system (T3SS), required for the attaching and effacing (A/E) lesion phenotype characteristic for intestinal colonization by certain EHEC strains, are tyrosine phosphorylated by bacterial kinases. Yet, A/E lesion and metabolic phenotypes were unaffected by the mutation of the two currently known tyrosine kinases, Etk and Wzc. Substantial residual tyrosine phosphorylation present in an etk wzc double mutant strongly indicated the presence of hitherto unknown tyrosine kinases in E. coli. We assess the functional importance of tyrosine phosphorylation and demonstrate that the phosphorylated tyrosine residue of the regulator SspA positively affects expression and secretion of T3SS proteins and formation of A/E lesions. Altogether, our study reveals that tyrosine phosphorylation in bacteria is more prevalent than previously recognized, and suggests the involvement of phosphotyrosine-mediated signaling in a broad range of cellular functions and virulence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

S100 family of calcium-binding proteins is commonly upregulated in a variety of tumor types and is often associated with tumor progression. Among several S100 members, altered expression of S100A2 is a potential diagnostic and prognostic marker in cancer. Several reports suggest a role for S100A2 in metastasis. Earlier, our studies established regulation of S100A2 by transforming growth factor- (TGF-) and its involvement in TGF--mediated cancer cell invasion and migration. However, the molecular mechanisms of S100A2 protumorigenic actions remain unexplored. In the present study, we demonstrate that overexpression of S100A2 in A549 lung cancer cells induced epithelialmesenchymal transition (EMT) followed by increased invasion, loose colony morphology in soft agar and enhanced Akt phosphorylation (Ser-473). Furthermore, overexpression of S100A2 led to increased tumor growth in immunocompromised mice. In agreement, immunohistochemical examination of resected xenograft tumors established inverse correlation between S100A2 and E-cadherin expression together with activated Akt signaling. Interestingly, our study demonstrates a strong dependence of S100A2 and Smad3 in TGF--induced Hep3B cell EMT and invasion. Most importantly, we demonstrate that these effects of S100A2 are manifested through functional interaction with Smad3, which is enhanced in the presence of high calcium and TGF-. S100A2 stabilizes Smad3 and binds to its C-terminal MH2 domain. Additionally, loss of S100A2 attenuates the transcription of TGF-/Smad3 target genes involved in tumor promotion, such as PA1-1 and vimentin. Collectively, our findings present the first mechanistic details of S100A2 protumorigenic actions and its involvement in TGF--mediated cancer cell invasion and EMT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abrin from Abrus precatorius plant is a potent protein synthesis inhibitor and induces apoptosis in cells. However, the relationship between inhibition of protein synthesis and apoptosis is not well understood. Inhibition of protein synthesis by abrin can lead to accumulation of unfolded protein in the endoplasmic reticulum causing ER stress. The observation of phosphorylation of eukaryotic initiation factor 2 alpha and upregulation of CHOP (CAAT/enhancer binding protein (C/EBP) homologous protein), important players involved in ER stress signaling by abrin, suggested activation of ER stress in the cells. ER stress is also known to induce apoptosis via stress kinases such as p38 MAPK and JNK. Activation of both the pathways was observed upon abrin treatment and found to be upstream of the activation of caspases. Moreover, abrin-induced apoptosis was found to be dependent on p38 MAPK but not JNK. We also observed that abrin induced the activation of caspase-2 and caspase-8 and triggered Bid cleavage leading to mitochondrial membrane potential loss and thus connecting the signaling events from ER stress to mitochondrial death machinery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Mycobacterium tuberculosis Rv1027c-Rv1028c genes are predicted to encode KdpDE two component system, which is highly conserved across all bacterial species. Here, we show that the system is functionally active and KdpD sensor kinase undergoes autophosphorylation and transfers phosphoryl group to KdpE, response regulator protein. We identified His(642) and Asp(52) as conserved phosphorylation sites in KdpD and KdpE respectively and by SPR analysis confirmed the physical interaction between them. KdpD was purified with prebound divalent ions and their importance in phosphorylation was established using protein refolding and ion chelation approaches. Genetically a single transcript encoded both KdpD and KdpE proteins. Overall, we report that M. tuberculosis KdpDE system operates like a canonical two component system. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HORMA domain (for Hop1p, Rev7p and MAD2) was discovered in three chromatin-associated proteins in the budding yeast Saccharomyces cerevisiae. This domain has also been found in proteins with similar functions in organisms including plants, animals and nematodes. The HORMA domain containing proteins are thought to function as adaptors for meiotic checkpoint protein signaling and in the regulation of meiotic recombination. Surprisingly, new work has disclosed completely unanticipated and diverse functions for the HORMA domain containing proteins. A. M. Villeneuve and colleagues (Schvarzstein et al., 2013) show that meiosis-specific HORMA domain containing proteins plays a vital role in preventing centriole disengagement during Caenorhabditis elegans spermatocyte meiosis. Another recent study reveals that S. cerevisiae Atg13 HORMA domain acts as a phosphorylation-dependent conformational switch in the cellular autophagic process. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HU, a widely conserved bacterial histone-like protein, regulates many genes, including those involved in stress response and virulence. Whereas ample data are available on HU-DNA communication, the knowledge on how HU perceives a signal and transmit it to DNA remains limited. In this study, we identify HupB, the HU homolog of the human pathogen Mycobacterium tuberculosis, as a component of serine/threonine protein kinase (STPK) signaling. HupB is extracted in its native state from the exponentially growing cells of M. tuberculosis H37Ra and is shown to be phosphorylated on both serine and threonine residues. The STPKs capable of modifying HupB are determined in vitro and the residues modified by the STPKs are identified for both in vivo and the in vitro proteins through mass spectrometry. Of the identified phosphosites, Thr(65) and Thr(74) in the DNA-embracing beta-strand of the N-terminal domain of HupB (N-HupB) are shown to be crucial for its interaction with DNA. In addition, Arg(55) is also identified as an important residue for N-HupB-DNA interaction. N-HupB is shown to have a diminished interaction with DNA after phosphorylation. Furthermore, hupB is shown to be maximally expressed during the stationary phase in M. tuberculosis H37Ra, while HupB kinases were found to be constitutively expressed (PknE and PknF) or most abundant during the exponential phase (PknB). In conclusion, HupB, a DNA-binding protein, with an ability to modulate chromatin structure is proposed to work in a growth-phase-dependent manner through its phosphorylation carried out by the mycobacterial STPKs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interferon-gamma (Ifn gamma), a known immunomodulatory cytokine, regulates cell proliferation and survival. In this study, the mechanisms leading to the selective susceptibility of some tumor cells to Ifn gamma were deciphered. Seven different mouse tumor cell lines tested demonstrated upregulation of MHC class I to variable extents with Ifn gamma; however, only the cell lines, H6 hepatoma and L929 fibrosarcoma, that produce higher amounts of nitric oxide (NO) and reactive oxygen species (ROS) are sensitive to Ifn gamma-induced cell death. NO inhibitors greatly reduce Ifn gamma-induced ROS; however, ROS inhibitors did not affect the levels of Ifn gamma-induced NO, demonstrating that NO regulates ROS. Consequently, NO inhibitors are more effective, compared to ROS inhibitors, in reducing Ifn gamma-induced cell death. Further analysis revealed that Ifn gamma induces peroxynitrite and 3-nitrotyrosine amounts and a peroxynitrite scavenger, FeTPPS, reduces cell death. Ifn gamma treatment induces the phosphorylation of c-jun N-terminal kinase (Jnk) in H6 and L929 but not CT26, a colon carcinoma cell line, which is resistant to Ifn gamma-mediated death. Jnk activation downstream to NO leads to induction of ROS, peroxynitrite and cell death in response to Ifn gamma. Importantly, three cell lines tested, i.e. CT26, EL4 and Neuro2a, that are resistant to cell death with Ifn gamma alone become sensitive to the combination of Ifn gamma and NO donor or ROS inducer in a peroxynitrite-dependent manner. Overall, this study delineates the key roles of NO as the initiator and Jnk, ROS, and peroxynitrite as the effectors during Ifn gamma-mediated cell death. The implications of these findings in the Ifn gamma-mediated treatment of malignancies are discussed. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interferon-gamma (Ifn gamma), a known immunomodulatory cytokine, regulates cell proliferation and survival. In this study, the mechanisms leading to the selective susceptibility of some tumor cells to Ifn gamma were deciphered. Seven different mouse tumor cell lines tested demonstrated upregulation of MHC class I to variable extents with Ifn gamma; however, only the cell lines, H6 hepatoma and L929 fibrosarcoma, that produce higher amounts of nitric oxide (NO) and reactive oxygen species (ROS) are sensitive to Ifn gamma-induced cell death. NO inhibitors greatly reduce Ifn gamma-induced ROS; however, ROS inhibitors did not affect the levels of Ifn gamma-induced NO, demonstrating that NO regulates ROS. Consequently, NO inhibitors are more effective, compared to ROS inhibitors, in reducing Ifn gamma-induced cell death. Further analysis revealed that Ifn gamma induces peroxynitrite and 3-nitrotyrosine amounts and a peroxynitrite scavenger, FeTPPS, reduces cell death. Ifn gamma treatment induces the phosphorylation of c-jun N-terminal kinase (Jnk) in H6 and L929 but not CT26, a colon carcinoma cell line, which is resistant to Ifn gamma-mediated death. Jnk activation downstream to NO leads to induction of ROS, peroxynitrite and cell death in response to Ifn gamma. Importantly, three cell lines tested, i.e. CT26, EL4 and Neuro2a, that are resistant to cell death with Ifn gamma alone become sensitive to the combination of Ifn gamma and NO donor or ROS inducer in a peroxynitrite-dependent manner. Overall, this study delineates the key roles of NO as the initiator and Jnk, ROS, and peroxynitrite as the effectors during Ifn gamma-mediated cell death. The implications of these findings in the Ifn gamma-mediated treatment of malignancies are discussed. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Matrix detachment triggers anoikis, a form of apoptosis, in most normal epithelial cells, while acquisition of anoikis resistance is a prime requisite for solid tumor growth. Of note, recent studies have revealed that a small population of normal human mammary epithelial cells (HMECs) survive in suspension and generate multicellular spheroids termed `mammospheres'. Therefore, understanding how normal HMECs overcome anoikis may provide insights into breast cancer initiation and progression. Methods: Primary breast tissue-derived normal HMECs were grown as adherent monolayers or mammospheres. The status of AMP-activated protein kinase (AMPK) and PEA15 signaling was investigated by immunoblotting. Pharmacological agents and an RNA interference (RNAi) approach were employed to gauge their roles in mammosphere formation. Immunoprecipitation and in vitro kinase assays were undertaken to evaluate interactions between AMPK and PEA15. In vitro sphere formation and tumor xenograft assays were performed to understand their roles in tumorigenicity. Results: In this study, we show that mammosphere formation by normal HMECs is accompanied with an increase in AMPK activity. Inhibition or knockdown of AMPK impaired mammosphere formation. Concomitant with AMPK activation, we detected increased Ser(116) phosphorylation of PEA15, which promotes its anti-apoptotic functions. Inhibition or knockdown of AMPK impaired PEA15 Ser(116) phosphorylation and increased apoptosis. Knockdown of PEA15, or overexpression of the nonphosphorylatable S116A mutant of PEA15, also abrogated mammosphere formation. We further demonstrate that AMPK directly interacts with and phosphorylates PEA15 at Ser(116) residue, thus identifying PEA15 as a novel AMPK substrate. Together, these data revealed that AMPK activation facilitates mammosphere formation by inhibition of apoptosis, at least in part, through Ser(116) phosphorylation of PEA15. Since anoikis resistance plays a critical role in solid tumor growth, we investigated the relevance of these findings in the context of breast cancer. Significantly, we show that the AMPK-PEA15 axis plays an important role in the anchorage-independent growth of breast cancer cells both in vitro and in vivo. Conclusions: Our study identifies a novel AMPK-PEA15 signaling axis in the anchorage-independent growth of both normal and cancerous mammary epithelial cells, suggesting that breast cancer cells may employ mechanisms of anoikis resistance already inherent within a subset of normal HMECs. Thus, targeting the AMPK-PEA15 axis might prevent breast cancer dissemination and metastasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histones regulate a variety of chromatin templated events by their post-translational modifications (PTMs). Although there are extensive reports on the PTMs of canonical histones, the information on the histone variants remains very scanty. Here, we report the identification of different PTMs, such as acetylation, methylation, and phosphorylation of a major mammalian histone variant TH2B. Our mass spectrometric analysis has led to the identification of both conserved and unique modifications across tetraploid spermatocytes and haploid spermatids. We have also computationally derived the 3-dimensional model of a TH2B containing nucleosome in order to study the spatial orientation of the PTMs identified and their effect on nucleosome stability and DNA binding potential. From our nucleosome model, it is evident that substititution of specific amino acid residues in TH2B results in both differential histone-DNA and histone-histone contacts. Furthermore, we have also observed that acetylation on the N-terminal tail of TH2B weakens the interactions with the DNA. These results provide direct evidence that, similar to somatic H2B, the testis specific histone TH2B also undergoes multiple PTMs, suggesting the possibility of chromatin regulation by such covalent modifications in mammalian male germ cells.