63 resultados para : fibre reinforced composite


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to its complex honeycomb structure, the numerical modeling of the geocell has always been a big challenge. Generally, the equivalent composite approach is used to model the geocells. In the equivalent composite approach, the geocellsoil composite is treated as the soil layer with improved strength and stiffness values. Though this approach is very simple, it is unrealistic to model the geocells as the soil layer. This paper presents a more realistic approach of modeling the geocells in three-dimensional (3D) framework by considering the actual curvature of the geocell pocket. A square footing resting on geocell reinforced soft clay bed was modeled using the ``fast Lagrangian analysis of continua in 3D'' (FLAC(3D)) finite difference package. Three different material models, namely modified Cam-clay, Mohr-Coulomb, and linear elastic were used to simulate the behaviour of foundation soil, infill soil and the geocell, respectively. It was found that the geocells distribute the load laterally to the wider area below the footing as compared to the unreinforced case. More than 50% reduction in the stress was observed in the clay bed in the presence of geocells. In addition to geocells, two other cases, namely, only geogrid and geocell with additional basal geogrid cases were also simulated. The numerical model was systematically validated with the results of the physical model tests. Using the validated numerical model, parametric studies were conducted to evaluate the influence of various geocell properties on the performance of reinforced clay beds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corrosion behaviour of AE42 magnesium alloy and its composites reinforced with Saffil short fibres and SiC particles in various combinations was investigated. The corrosion rate of the unreinforced alloy was the lowest. The composite reinforced with Saffil short fibre alone exhibited slightly lower corrosion rate than the hybrid composites containing both Saffil short fibres and SiC particles. However, there was no specific trend observed in the corrosion rate of the hybrid composites with respect to the SiC particle content. The degradation of corrosion resistance of the composites was mainly attributed to the irregular and loose surface films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work intends to demonstrate the effect of geometrically non-linear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting the three-dimensional warping of the cross-section. The only restriction in the present analysis is that the strains within each elastic body remain small (i.e., this work does not deal with materials exhibiting non-linear constitutive laws at the 3-D level). Here, all component bars of the mechanism are made of fiber-reinforced laminates. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction, results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis, the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here. The representative cross-sections of all component bars are analyzed using two different approaches: (1) Numerical Model and (2) Analytical Model. Four-bar mechanisms are analyzed using the above two approaches for Omega = 20 rad/s and Omega = pi rad/s and observed the same behavior in both cases. The noticeable snap-shots of the deformation shapes of the mechanism about 1000 frames are also reported using commercial software (I-DEAS + NASTRAN + ADAMS). The maximum out-of-plane warping of the cross-section is observed at the mid-span of bar-1, bar-2 and bar-3 are 1.5 mm, 250 mm and 1.0 mm, respectively, for t = 0:5 s. (C) 2015 Elsevier Ltd. All rights reserved.