652 resultados para Synthesis of thiosemicarbazone ligands,
Resumo:
We report a unique, single source precursor Prussian blue (iron(III) ferrocyanide (Fe-4(III)Fe-II(CN)(6)](3))) for the synthesis of Fe/Fe3C nanoparticle encapsulated N-doped graphitic layers and bamboo-like graphitic nanotubes. Hollow N-doped graphite (N-HG) nanostructures are obtained when the encapsulated nanostructures are treated with an acid. Both the encapsulated nanostructures and N-HG are shown to be applicable as bi-functional electrocatalysts for oxygen reduction (ORR) and oxygen evolution reactions (OER). The ORR activity is shown to be improved for N-HG and is comparable to commercial Pt/C. On the other hand, encapsulated nanostructures exhibit OER activity with long-term stability comparable to commercial RuO2.
Resumo:
A ligand controlled selective hydroborylation of alkynes to alpha- or beta-vinylboronates has been developed using a Pd catalyst. The high alpha-selectivity displayed by this reaction can be switched to furnish beta-vinylboronates by altering the ligand from a trialkylphosphine to N-heterocyclic carbene. A variety of terminal alkynes are shown to furnish the corresponding alpha- or beta-vinylboronates in good to excellent selectivity and yield. The mechanistic studies suggest that the solvent is the proton source and bromobenzene functions as an important additive in driving this reaction forward.
Resumo:
We report a unique, single source precursor Prussian blue (iron(III) ferrocyanide (Fe-4(III)Fe-II(CN)(6)](3))) for the synthesis of Fe/Fe3C nanoparticle encapsulated N-doped graphitic layers and bamboo-like graphitic nanotubes. Hollow N-doped graphite (N-HG) nanostructures are obtained when the encapsulated nanostructures are treated with an acid. Both the encapsulated nanostructures and N-HG are shown to be applicable as bi-functional electrocatalysts for oxygen reduction (ORR) and oxygen evolution reactions (OER). The ORR activity is shown to be improved for N-HG and is comparable to commercial Pt/C. On the other hand, encapsulated nanostructures exhibit OER activity with long-term stability comparable to commercial RuO2.
Resumo:
Investigation of the interactions between graphene oxide (GO) and biomolecules is very crucial for the development of biomedical applications based on GO. This study reports the first observation of the spontaneous formation of self-assembled liquid crystals and three-dimensional hydrogels of graphene oxide with double-stranded DNA by simple mixing in an aqueous buffer media without unwinding double-stranded DNA to single-stranded DNA. The GO/dsDNA hydrogels have shown controlled porosity by changing the concentration of the components. The strong binding between dsDNA and graphene is proved by Raman spectroscopy.
Resumo:
Exploring future cathode materials for sodium-ion batteries, alluaudite class of Na2Fe2II(SO4)(3) has been recently unveiled as a 3.8 V positive insertion candidate (Barpanda et al. Nat. Commun. 2014, 5, 4358). It forms an Fe-based polyanionic compound delivering the highest Fe-redox potential along with excellent rate kinetics and reversibility. However, like all known SO4-based insertion materials, its synthesis is cumbersome that warrants careful processing avoiding any aqueous exposure. Here, an alternate low temperature ionothermal synthesis has been described to produce the alluaudite Na2+2xFe2-xII(SO4)(3). It marks the first demonstration of solvothermal synthesis of alluaudite Na2+2xM2-xII(SO4)(3) (M = 3d metals) family of cathodes. Unlike classical solid-state route, this solvothermal route favors sustainable synthesis of homogeneous nanostructured alluaudite products at only 300 degrees C, the lowest temperature value until date. The current work reports the synthetic aspects of pristine and modified ionothermal synthesis of Na2+2xFe2-xII(SO4)(3) having tunable size (300 nm similar to 5 mu m) and morphology. It shows antiferromagnetic ordering below 12 K. A reversible capacity in excess of 80 mAh/g was obtained with good rate kinetics and cycling stability over 50 cycles. Using a synergistic approach combining experimental and ab initio DFT analysis, the structural, magnetic, electronic, and electrochemical properties and the structural limitation to extract full capacity have been described.
Resumo:
Here, we demonstrate a green and environment-friendly pyrolysis route for the synthesis of metal-rich sulphide embedded in an N-doped carbon (NC) framework in the absence of sulphide ions (S2-). The metal-chelate complex (tris(ethylenediamine) metal(II) sulfate) serves as a new and single source precursor for the synthesis of earth abundant and non-precious hybrid structures such as metal-rich sulphides Co9S8@NC and Ni3S2@ NC when M-II = Co2+ and Ni2+ and counter sulphate (SO42-) ions are the source of S. Both the hybrids show superior OER activity as compared to commercial RuO2.