793 resultados para Tailings (Metallurgy)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type of abrasion that the grinding medium experiences inside a ball mill is classified as high stress or grinding abrasion, because the stress levels at the surface of the medium exceed the yield stress of the metal when hard abrasives are crushed. During dry grinding of ores the medium undergoes not only abrasion but also erosion and impact. As all three mechanisms of wear occur simultaneously, it is difficult to follow the individual components of wear. However, it is possible to show that the overall kinetics of wear follows a simple power law of the type w = at(b), where w is the weight loss of the grinding medium for a specified grinding time t and a and b are constants. Experimental data, obtained from dry grinding of quartz for a wide range of times using AISI 52100 steel balls having various microstructures in a laboratory scale batch mill, are fitted to the proposed equation and the wear rate w is calculated from the first derivative of the equation. The mean particle sizes of the quartz charge DBAR corresponding to 50 and 80% retained size are determined by mechanical sieving of the ground product after a grinding time t and thus the relationship between wear rate and particle size of the abrasive is established. It is found that w increases rapidly with DBAR up to some critical size and then increases at a much lower rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc-10 and 20 wt pct Pb alloys have been rapidly solidified by melt spinning to obtain a very fine scale dispersion of nanometer-sized Pb particles embedded in Zn matrix. The microstructure and crystallography of the Pb particles have been studied using transmission electron microscopy (TEM). Each embedded Pb particle is a single crystal, with a truncated hexagonal biprism shape with the 6/mmm Zn matrix point group symmetry surrounded by and { 0001 á },\text { \text10[`\text1] \text0 },\text and { \text10[`\text1] \text1 }0001 1010 and 1011 facets. The Pb particles solidify with a well-defined orientation relationship with the Zn matrix of ( 0001 )Zn ||(111)Pb\text and\text [ \text11[`\text2] \text0 ]Zn| ||[ 1[`1] 0 ]Pb 0001Zn(111)Pb and 1120Zn110Pb . The melting and solidification behavior of the Pb particle have been studied using differential scanning calorimetry (DSC). The Pb particles solidify with an undercooling of approximately 30 K, by heterogeneous nucleation on the {0001} facets of the surrounding Zn matrix, with an apparent contact angle of 23 deg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron diffraction studies were carried out to establish the icosahedral phase formation in rapidly quenched Ti-37 at% Mn and Ti-24 at% Mn-13 at% Fe alloys. Distortions in the diffraction spots and diffuse intensities in the diffraction patterns were investigated. The existence of a rational approximant structure and a decagonal like phase are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetics of the oxidation of electrodeposited boron powder and the boron powder produced by the reduction process were studied using thermogravimetry (TG). The oxidation was carried out by heating boron powder in a stream of oxygen. Both isothermal and non-isothermal methods were used to study the kinetics. Model-free isoconversional method was used to derive the kinetics parameters. A two step oxidation reaction (exothermic) was observed. The oxidation reaction could not be completed due to the formation of glassy layer of boric oxide on the surface of boron powder which acts as a barrier for further diffusion of oxygen into the particle. The activation energy obtained using model-free method for electrodeposited boron is 122 +/- 7 kJ mol(-1) whereas a value of 205 +/- 9 kJ mol(-1) was obtained for boron produced by the reduction process (commercially procured boron). Mechanistic interpretation of the oxidation reaction was done using model based method. The activation energy was found to depend on the size distribution of the particles and specific surface area of the powder. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the comparative stability of sp(2) bonded planar hexagonal boron nitride (h-BN) nanoribbon (BNNR) edges, using first principles calculations. We find that the pristine armchair edges have the highest degree of stability. Pristine zigzag edges are metastable, favoring planar reconstructions in the form of 5-7 rings] that minimizes the energy. Our investigation further reveals that the pristine zigzag edges can be stabilized against 5-7 reconstructions by passivating the dangling bonds at the edges by other elements, such as hydrogen (H) atoms. Electronic and magnetic properties of nanoribbons depend on the edge shapes and are strongly affected by edge reconstructions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we explore the enhancement of solubility in a mechanically driven immiscible system experimentally using a mixture of Ag and Bi powders corresponding to a composition of Ag-5.1 at.% Bi. Increase in solubility can be correlated with the combination of sizes of both Ag and Bi at the nanometric scale. It is shown that complete solid solution of Ag-5.1 at.% Bi forms when the respective sizes of :Bi and Ag exceed 13 and 8 nm respectively. We have carried out a thermodynamic analysis of the size- and strain-dependent free energy landscape and compared the results to the initial mixture of microsized particles to rationalize the evolution of Ag solid solution. The agreement indicates that the emerging driving force for the formation of solid solution is primarily due to size reduction rather than the enhanced kinetics of mass transport due to mechanical driving. (c) 2011 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minor addition of B to the Ti-6Al-4V alloy reduces the prior beta grain size by more than an order of magnitude. TiB formed in-situ in the process has been noted to decorate the grain boundaries. This microstructural modification influences the mechanical behavior of the Ti-6Al-4V alloy significantly. In this paper, an overview of our current research on tensile properties, fracture toughness as well as notched and un-notched fatigue properties of Ti-6Al-4V-xB with x varying between 0.0 to 0.55 wt.% is presented. A quantitative relationship between the microstructural length scales and the various mechanical properties have been developed. Moreover, the effect of the presence of hard and brittle TiB has also been studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In ceramics, dopants offer the possibility of higher creep rates by enhancing diffusion. The present study examines the potential for high strain rate superplasticity in a TiO2 doped zirconia, by conducting creep experiments together with microstructural characterization. It is shown that both pure and doped zirconia exhibit transitions in creep behaviour from Coble diffusion creep with n similar to 1 to an interface controlled process with n similar to 2. Doping with TiO2 enhances the creep rate by over an order of magnitude. There is evidence of substantial grain boundary sliding, consistent with diffusion creep.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The processing map for hot working of Al alloy 2014-20vol.%Al2O3 particulate-reinforced cast-plus-extruded composite material has been generated covering the temperature range 300-500 degrees C and the strain rate range 0.001-10 s(-1) based on the dynamic materials model. The efficiency eta of power dissipation given by 2m/(m + 1), where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of superplasticity has been identified, with a peak efficiency of 62% occurring at 500 degrees C and 0.001 s(-1). The characteristics of this domain have been studied with the help of microstructural evaluation and hot-ductility measurements. Microstructural instability is predicted at higher strain rates above (ls(-1)) and lower temperatures (less than 350 degrees C).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ′ and carbides), alloy B with double aging treatment (spherical γ′ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ′ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ′ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ′ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ′ and consequent softening. Coarser γ′ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hot-working characteristics of Zircaloy-2 have been studied in the temperature range of 650 to 950°C and in the strain-rate range of 10−3 to 102 s−1 using power dissipation maps which describe the variation of the efficiency of power dissipation, η = 2m /(m + 1) where m is the strain-rate sensitivity of flow stress. The individual domains exhibited by the map have been interpreted and validated by detailed metallographic investigations. Dynamic recrystallization occurs in the temperature range of 730 to 830°C and in the strain-rate range of 10−2 to 2 s−1. The peak efficiency occurs at 800°C and 0.1 s−1 which may be considered as the optimum hot-working parameters in the α-phase field of Zircaloy-2. Superplastic behaviour, characterized by a high efficiency of power dissipation is observed at temperatures greater than 860°C and at strain rates lower than 10−2 s−1. When deformed at 650°C and 10−3 s−1, the primary restoration mechanism is dynamic recovery, while at rates higher than 2s−1, the material exhibits microstructural instabilities in the form of localized shear bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flexural strength of the Kevlar/epoxy composite laminates, in the pres ence of unfilled and filled circular defects, was studied. Circular drillings of two different diameters extending up to the neutral axis from the compression face as well as through holes, at three different positions from the midspan, have been considered as simplified cases of dents and defects. Bonded buttons of aluminium metal have been tested and shown to yield a strength-wise compensation for test samples with depressions. Macrography of the failed specimens is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tracer diffusion coefficients of the elements as well as the integrated interdiffusion coefficients are determined for the Cu3Sn and Cu6Sn5 intermetallic compounds using incremental diffusion couples and Kirkendall marker shift measurements. The activation energies are determined for the former between 498 K and 623 K (225 A degrees C and 350 A degrees C) and for the latter between 423 K and 473 K (150 A degrees C and 200 A degrees C). Sn is found to be a slightly faster diffuser in Cu6Sn5, and Cu is found to be the faster diffuser in Cu3Sn. The results from the incremental couples are used to predict the behavior of a Cu/Sn couple where simultaneous growth of both intermetallics occurs. The waviness at the Cu3Sn/Cu6Sn5 interface and possible reasons for not finding Kirkendall markers in both intermetallics in the Cu/Sn couple are discussed.