774 resultados para AK-3569


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sr2SbMnO6 (SSMO) ceramics were, fabricated using the nanocrystalline powders obtained via molten salt synthesis (MSS) method. High temperature X-ray diffraction studies confirmed the structural phase transition (room temperature tetragonal (I4/mcm) to the cubic phase (Pm-3m)) temperature to be around 736K. The discontinuity in the phase transition indicated its first order nature reflecting the presence of ferroelectric-like distortions in SSMO prepared from MSS which seemed to be unique as it was not observed so far in the case of SSMO prepared using solid-state reaction method. The dielectric behavior of SSMO was studied in the 300-950 K temperature range at high frequencies (MHz range) in order to suppress the of space charge and related effects that dominate at such higher temperatures and mask the real phase transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk samples of S40Se60-xSbx (with x=10, 20, 30, 40 at. %) were prepared from high purity S, Se and Sb by melt quenching method. XRD studies revealed that all the samples have poly-crystalline phase. The variation in optical properties with composition has been investigated by XPS and Raman spectroscopy. The intensity of XPS core level spectra changes with addition of Sb clearly interprets the optical properties change due to compositional variation. The Raman shift and new peak formation in these samples clearly shows the structural modifications due to Sb addition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermally evaporated amorphous Sb40Se20S40 thin film of 800 nm thickness was subjected to light exposure for photo induced studies. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS spectra supports the optical changes happening in the film due to light exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High density transparent glasses (7.86 g/cc) were fabricated in the 2Bi(2)O(3)-B2O3 (BBO) system. Optical band gap of the obtained glasses was found to be 2.6eV. The refractive index measured for these glasses was 2.25 +/- 0.05 at lambda=543 nm. Nonlinear refraction and absorption studies were carried out on the BBO glasses using z-scan technique a lambda=532 nm of 10 ns pulse width. The nonlinear refractive index obtained was n(2)=12.1x10(-14) cm(2)/W and nonlinear absorption coefficient was beta=15.2 cm/GW. The n(2) and beta values of the BBO glasses were large compared to the other reported high index bismuth based oxide glass systems in the literature. These were attributed to the high density, high linear refractive index, low band gap and two photon absorption associated with these glasses. The electronic origin of large nonlinearities was discussed based on bond-orbital theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of oxygen pressure (P-O2) on the Yttrium Iron Garnet (YIG) thin films were grown on silicon substrate by rf sputtering method was studied. The as-deposited films at 300K were amorphous in nature. The crystallization of these films was achieved by annealing at a temperature of 800 degrees C/1hr in air. The structural, microstructural and magnetic properties were found to be dependent on P-O2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CoSb3 skutterudites are established thermoelectric materials in the 500-800K temperature range. Undoped and Bi filled CoSb3 samples were synthesized by induction melting-annealing process and phase confirmation done by X-Ray diffraction. The role of bismuth as a filler in CoSb3 was investigated by Raman and far infrared reflectance study. It was found that bismuth strengthens Sb vibrations, and can potentially scatter Sb related acoustic phonons effectively. As a result substantial reduction in thermal conductivity may be possible with proper control of Bi filling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have carried out synchrotron based high-pressure x-ray diffraction study of orthorhombic EuMnO3, GdMnO3, TbMnO3 and DyMnO3 up to 54.4, 41.6, 47.0 and 50.2 GPa, respectively. The diffraction peaks of all the four manganites shift monotonically to higher diffraction angles and the crystals retain the orthorhombic structure till the highest pressure. We have fitted the observed volume versus pressure data with the Birch-Murnaghan equation of state and determined the bulk modulus to be 185 +/- 6 GPa, 190 +/- 16 GPa, 188 +/- 9 GPa and 192 +/- 8 GPa for EuMnO3, GdMnO3, TbMnO3 and DyMnO3, respectively. The bulk modulus of EuMnO3 is comparable to other manganites, in contrast to theoretical predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead-Carbon hybrid ultracapacitors (Pb-C HUCs) with flooded, absorbent-glass-mat (AGM) and silica-gel sulphuric acid electrolyte configurations are developed and performance tested. Pb-C HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area carbon with graphite-sheet substrate as negative electrodes. The electrode and silica-gel electrolyte materials are characterized by XRD, XPS, SEM, TEM, Rheometry, BET surface area, and FTIR spectroscopy in conjunction with electrochemistry. Electrochemical performance of SI-PbO2 and carbon electrodes is studied using cyclic voltammetry with constant-current charge and discharge techniques by assembling symmetric electrical-double-layer capacitors and hybrid Pb-C HUCs with a dynamic Pb(porous)/PbSO4 reference electrode. The specific capacitance values for 2 V Pb-C HUCs are found to be 166 F/g, 102 F/g and 152 F/g with a faradaic efficiency of 98%, 92% and 88% for flooded, AGM and gel configurations, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report microscopic structural and dynamical measurements on binary mixtures of homopolymers and polymer grafted nanoparticles at high densities in good solvent. We find strong and unexpected anomalies in the structure and dynamics of these binary mixtures, including appearance of spontaneous orientational alignment, as a function of added homopolymers of different molecular weights. Our experiments point to the possibility of exploiting the phase space in density and homopolymer size, of such hybrid systems, to create new materials with novel structural and physical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the geometrical effect of graded buckled multiwalled carbon nanotube arrays on the electrical transport properties in the diffusive regime, via successive breakdown caused by the Joule heating. This breakdown occurs in the straighter region. Empirical relations involving the current-carrying ability, resistance, breakdown power, threshold voltage, diameter and length of carbon nanotube arrays are discussed on the basis of an extensive set of experimental data along with justification. The experimental results are corroborated by the density functional tight-binding calculations of electronic band structure. The band gap decreases as buckleness increases leading to the enhancement in the current-carrying ability and elucidating the role of buckleness in carbon nanotubes. Copyright (c) EPLA, 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of novel organic-inorganic hybrid membranes have been prepared employing Nafion and acid-functionalized meso-structured molecular sieves (MMS) with varying structures and surface area. Acid-functionalized silica nanopowder of surface area 60 m(2)/g, silica meso-structured cellular foam (MSU-F) of surface area 470 m(2)/g and silica meso-structured hexagonal frame network (MCM-41) of surface area 900 m(2)/g have been employed as potential filler materials to form hybrid membranes with Nafion framework. The structural behavior, water uptake, proton conductivity and methanol permeability of these hybrid membranes have been investigated. DMFCs employing Nafion-silica MSU-F and Nafion-silica MCM-41 hybrid membranes deliver peak-power densities of 127 mW/cm(2) and 100 mW/cm(2), respectively; while a peak-power density of only 48 mW/cm(2) is obtained with the DMFC employing pristine recast Nafion membrane under identical operating conditions. The aforesaid characteristics of the hybrid membranes could be exclusively attributed to the presence of pendant sulfonic acid groups in the filler, which provide fairly continuous proton-conducting pathways between filler and matrix in the hybrid membranes facilitating proton transport without any trade-off between its proton conductivity and methanol crossover. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.036211jes] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the relaxation dynamics of photogenerated carriers in silicon nanowires consisting of a crystalline core and a surrounding amorphous shell, using femtosecond time-resolved differential reflectivity and transmission spectroscopy at 3.15 eV and 1.57 eV photon energies. The complex behaviour of the differential transmission and reflectivity transients is the mixed contributions from the crystalline core and the amorphous silicon on the nanowire surface and the substrate where competing effects of state-filling and photoinduced absorption govern the carrier dynamics. Faster relaxation rates are observed on increasing the photogenerated carrier density. Independent experimental results on crystalline silicon-on-sapphire (SOS) help us in separating the contributions from the carrier dynamics in crystalline core and the amorphous regions in the nanowire samples. Further, single-beam z-scan nonlinear transmission experiments at 1.57 eV in both open- and close-aperture configurations yield two-photon absorption coefficient beta (similar to 3 cm/GW) and nonlinear refraction coefficient gamma (-2.5 x 10 (-aEuro parts per thousand 4) cm(2)/GW).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using all atom molecular dynamics simulations, we report spontaneous unzipping and strong binding of small interfering RNA (siRNA) on graphene. Our dispersion corrected density functional theory based calculations suggest that nucleosides of RNA have stronger attractive interactions with graphene as compared to DNA residues. These stronger interactions force the double stranded siRNA to spontaneously unzip and bind to the graphene surface. Unzipping always nucleates at one end of the siRNA and propagates to the other end after few base-pairs get unzipped. While both the ends get unzipped, the middle part remains in double stranded form because of torsional constraint. Unzipping probability distributions fitted to single exponential function give unzipping time (tau) of the order of few nanoseconds which decrease exponentially with temperature. From the temperature variation of unzipping time we estimate the energy barrier to unzipping. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4742189]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperature dependent x-ray diffraction measurements have been performed to understand the implications of magnetic phase coexistence on crystallographic structure in a half-doped manganite Pr0.5Sr0.5MnO3. The compound shows a structural phase transition from high-temperature tetragonal-I4/mcm to low-temperature orthorhombic-Fmmm symmetry around the ferromagnetic to antiferro-magnetic transition. Rietveld analysis shows the coexistence of these two structures emerges at high temperature within the ferromagnetic state, and persists down to lowest temperature. Below around 40 K, however, this structural evolution stops, and a significant fraction (similar to 22%) of untransformed high-temperature phase remains. This agrees with earlier magnetization study, thus establishing its magneto-structural coupling. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the planetary-scale wave features using concurrent observations of mesospheric wind and temperature, ionospheric h'F, and tropospheric wind from Tirunelveli, Gadanki, and Kolhapur, all located in the Indian low latitudes, made during February 2009. Our investigations reveal that 3 to 5 day periodicity, characterized as ultrafast Kelvin (UFK) waves, was persistent throughout the atmosphere during this period. These waves show clear signatures of upward wave propagation from troposphere to the upper mesosphere, linking the ionosphere through a clear correlation between mesospheric winds and h'F variations. We also note that the amplitude of this wave decreased as we moved away from the equator. These results are the first of their kind from Indian sector, portraying the vertical as well as latitudinal characteristics of the 3 to 5 day UFK waves simultaneously from the troposphere to the ionosphere.