855 resultados para Metallurgy.
Phase relations and thermodynamic properties of condensed phases in the system calcium-copper-oxygen
Resumo:
The isothermal sections of the phase diagram for the system Ca-Cu-0 at 1073 and 1223 K have been determined. Several compositions in the ternary system were quenched after equilibration, and the phases present were identified by optical microscopy, X-ray diffraction, and electron probe microanalysis. Two ternary compounds Ca2CuO3 and Cao.8&uO1.9s were identified at 1073 K. However, only Ca2CuO3 was found to be stable at 1223 K. The thermodynamic properties of the two ternary compounds were determined using solid-state cells incorporating either an oxide or a fluoride solid electrolyte. The results for both types of cells were internally consistent. The compound C ~ O . ~ & U Ow~h.i~ch~ c, a n also be represented as Ca15Cu18035h, as been identified in an earlier investigation as Cao.828CuOz. Using a novel variation of the galvanic cell technique, in which the emf of a cell incorporating a fluoride electrolyte is measured as a function of the oxygen potential of the gas phase in equilibrium with the condensed phase electrodes, it has been confirmed that the compound Cao.828CuO1.93 (Ca15Cu18035d) oes not have significant oxygen nonstoichiometry. Phase relations have been deduced from the thermodynamic data as a function of the partial pressure of oxygen for the system Ca-Cu-0 at 873, 1073, and 1223 K.
Resumo:
The phase relations in the system Cu-Gd-O have been determined at 1273 K by X-ray diffrac- tion, optical microscopy, and electron microprobe analysis of samples equilibrated in quartz ampules and in pure oxygen. Only one ternary compound, CuGd2O4, was found to be stable. The Gibbs free energy of formation of this compound has been measured using the solid-state cell Pt, Cu2O + CuGd2O4 + Gd2O3 // (Y2O3) ZrO2 // CuO + Cu2O, Pt in the temperature range of 900 to 1350 K. For the formation of CuGd2O4 from its binary component oxides, CuO (s) + Gd2O3 (s) → CuGd2O4 (s) ΔG° = 8230 - 11.2T (±50) J mol-1 Since the formation is endothermic, CuGd2O4 becomes thermodynamically unstable with respect to CuO and Gd2O3 below 735 K. When the oxygen partial pressure over CuGd2O4 is lowered, it decomposes according to the reaction 4CuGd2O4 (s) → 4Gd2O3 (s) + 2Cu2O (s) + O2 (g) for which the equilibrium oxygen potential is given by Δμo 2 = −227,970 + 143.2T (±500) J mol−1 An oxygen potential diagram for the system Cu-Gd-O at 1273 K is presented.
Resumo:
The phase relations in the systems Cu–O–R2O3(R = Tm, Lu) have been determined at 1273 K by X-ray diffraction, optical microscopy and electron probe microanalysis of samples equilibrated in evacuated quartz ampules and in pure oxygen. Only ternary compounds of the type Cu2R2O5 were found to be stable. The standard Gibbs energies of formation of the compounds have been measured using solid-state galvanic cells of the type, Pt|Cu2O + Cu2R2O5+ R2O3‖(Y2O3)ZrO2‖CuO + Cu2O‖Pt in the temperature range 950–1325 K. The standard Gibbs energy changes associated with the formation of Cu2R2O5 compounds from their binary component oxides are: 2CuO(s)+ Tm2O3(s)→Cu2Tm2O5(s), ΔG°=(10400 – 14.0 T/K)± 100 J mol–1, 2CuO(s)+ Lu2O3(s)→Cu2Lu2O5(s), ΔG°=(10210 – 14.4 T/K)± 100 J mol–1 Since the formation is endothermic, the compounds become thermodynamically unstable with respect to component oxides at low temperatures, Cu2Tm2O5 below 743 K and Cu2Lu2O5 below 709 K. When the chemical potential of oxygen over the Cu2R2O5 compounds is lowered, they decompose according to the reaction, 2Cu2R2O5(s)→2R2O3(s)+ 2Cu2O(s)+ O2(g) The equilibrium oxygen potential corresponding to this reaction is obtained from the emf. Oxygen potential diagrams for the Cu–O–R2O3 systems at 1273 K are presented.
Resumo:
The constitutive behaviour of agr — nickel silver in the temperature range 700–950 °C and strain rate range 0.001–100 s–1 was characterized with the help of a processing map generated on the basis of the principles of the ldquodynamic materials modelrdquo of Prasadet al Using the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by 2m/(m+1) wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-nickel silver exhibits a single domain at temperatures greater than 750 °C and at strain rates lower than 1s–1, with a maximum efficiency of 38% occurring at about 950 °C and at a strain rate of 0.1 s–1. In the domain the material undergoes dynamic recrystallization (DRX). On the basis of a model, it is shown that the DRX is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb. At high strain rates (10 and 100s–1) the material undergoes microstructural instabilities, the manifestations of which are in the form of adiabatic shear bands and strain markings.
Resumo:
The constitutive behaviour of agr-beta nickel silver in the temperature range 600�850 °C and strainrate range 0.001�100s�1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-beta nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s�1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s�1. In the domain, the agr phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the beta phase deforms superplastically. Optimum conditions for the processing of agr-beta nickel silver are 850 °C and 0.1 s�1. The material undergoes unstable flow at strain rates of 10 and 100 s�1 and in the temperature range 600�750 °C, manifestated in the form of adiabatic shear bands.
Resumo:
The role of self accomodation of the different mertensite variants controlling the morphologies of the Zr---2.5wt%Nb alloy martensite has been examined. Three distinct types of grouping of martensite variants have been found to be predominantly present. Crystallographic descriptions of these groups have been provided and the degrees of self accomodation for these have been estimated and compared with those corresponding to other possible variant groupings around the symmetry axes of the parent phase. The frequently observed 3-variant group, which shows an “indentation mark” morphology when viewed along left angle bracket111right-pointing angle bracketβ directions in the transmission electron microscope, has been seen to have the highest degree of self accomodation amongst the cases considered. Based on the observations made, a growth sequence leading to the formation of the final martensitic structure has been proposed.
Resumo:
In the present investigation, experiments were conducted by unidirectional sliding of pins made of FCC metals (Pb, Al, and Cu) with significantly different hardness values against the steel plates of various surface textures and roughness using an inclined pin-on-plate sliding apparatus in ambient conditions under both the dry and lubricated conditions. For a given material pair, it was observed that transfer layer formation and the coefficient of friction along with its two components, namely adhesion and plowing, are controlled by the surface texture of the harder mating surfaces and are less dependent of surface roughness (R (a)) of the harder mating surfaces. The effect of surface texture on the friction was attributed to the variation of the plowing component of friction for different surfaces. It was also observed that the variation of plowing friction as a function of hardness depends on surface textures. More specifically, the plowing friction varies with hardness of the soft materials for a given type of surface texture and it is independent of hardness of soft materials for other type of surface texture. These variations could be attributed to the extent of plane strain conditions taking place at the asperity level during sliding. It was also observed that among the surface roughness parameters, the mean slope of the profile, Delta (a), correlated best with the friction. Furthermore, dimensionless quantifiable roughness parameters were formulated to describe the degree of plowing taking place at the asperity level.
Resumo:
The present work describes the evolution of a strong, single-component rotated-Brass ((1 1 0) < 5 5 6 >) texture in an Al-Zn-Mg-Cu-Zr alloy by an uneven hot cross-rolling with frequent interpass annealing. This texture development is unique because hot rolling of aluminum alloys results in orientation distribution along the ``beta-fibre''. It has been demonstrated that the deformation by cross-rolling of a partially recrystallized grain structure having rotated-Cube and Goss orientations, and the recrystallization resistance of near-Brass-oriented elongated grains play a critical role in development of this texture. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Erosion characteristics of high chromium (Cr, 16-19%) alloy cast iron with 5% and 10% manganese (Mn) prepared in metal and sand moulds through induction melting are investigated using jet erosion test setup in both as-cast and heat-treated conditions. The samples were characterised for hardness and microstructural properties. A new and novel non-destructive evaluation technique namely positron lifetime spectroscopy has also been used for the first time to characterise the microstructure of the material in terms of defects and their concentration. We found that the hardness decreases irrespective of the sample condition when the mould type is changed from metal to sand, On the other hand, the erosion volume loss shows an increasing trend. Since the macroscopic properties have a bearing on the microstructure, good credence is obtained from the microstructural features as seen from light and scanning electron micrographs. Faster cooling in the metal mould yielded fine carbide precipitation on the surface. The defect size and their concentration derived from positron method are higher for sand mould compared to metal mould. Lower erosion loss corresponds to smaller size defects in metal mould are the results of quicker heat transfer in the metal mould compared to the sand mould. Heat treatment effects are clearly seen as the reduced concentration of defects and spherodisation of carbides points to this. The erosion loss with respect to the defects size and concentration correlate very well.
Measurement for Thermal Effusivity of AlxGa1-xN Alloys Using Thermoreflectance with Periodic Heating
Resumo:
AlxGa1-xN alloys with x=0.375, 0.398, 0.401, 0.592 and 0.696 were deposited on sapphire substrate by the hydride-vapor-phase epitaxy (HVPE) method. Thermal effusivity measurements were carried out on AlxGa1-xN alloys using a thermal microscope at room temperature. The lag between sinusoidal heating laser wave and thermoreflectance wave was used to measure the thermal diffusivity. Thermal conductivity values of the AlxGa1-xN alloys were also obtained as a function of AIN mole fraction in the alloy. The thermal conductivity was found to decrease with increasing AIN fraction and the experimental data agree with values estimated using the virtual crystal model.