76 resultados para yolk hormones
Resumo:
The addition of nerve growth factor to organ cultures of superior cervical ganglia from immature rats specifically stimulated the incorporation of 32P-orthophosphate into phosphatidylinositol fraction. Equimolar concentrations of other hormones such as insulin, glucagon, thyroxine and growth hormone did not cause any stimulation of the incorporation of 14C-myoinositol into phosphatidylinositol. The stimulation of phosphatidylinositol turnover was observed over a concentration of nerve growth factor ranging from 10?10M to 10?7M. Nerve growth factor specific �inositide effect� was found to be sensitive to nerve growth factor antibody, 2,4-dinitrophenol, a high concentration of bovine growth hormones but not to Actinomycin D. The physiological significance of this finding in relation to nerve growth factor action in this target tissue is discussed.NGF, Nerve Growth Factor; SCG, Superior Cervical Ganglia; PI, Phosphatidylinositol
Resumo:
In order to identify the functionally relevant epitopes on chicken riboflavin carrier protein, we have raised monoclonal antibodies to the vitamin carrier. One of these, 6B2C12, was found to interact specifically with a synthetic oligopeptide corresponding to the C-terminal 17 amino acid residues of the chicken egg white riboflavin carrier protein, which is missing in part in the egg yolk riboflavin carrier protein. This epitope is conserved through evolution in mammals including humans. Administration of the ascites fluid of 6B2C12 to pregnant mice intraperitoneally, resulted in the termination of pregnancy indicating that this epitope is involved in or closely associated with the transplacental transport of the vitamin from the maternal circulation to the growing fetus.
Resumo:
When the male is the heterogametic sex (XX♀-XY♂ or XX♀-XO♂), as inDrosophila, orthopteran insects, mammals andCaenorhabditis elegans, X-linked genes are subject to dosage compensation: the single X in the male is functionally equivalent to the two Xs in the female. However, when the female is heterogametic (ZZ♂-ZW♀), as in birds, butterflies and moths, Z-linked genes are apparently not dosage-compensated. This difference between X-linked and Z-linked genes raises fundamental questions about the role of dosage compensation. It is argued that (i) genes which require dosage compensation are primarily those that control morphogenesis and the prospective body plan; (ii) the products of these genes are required in disomic doses especially during oogenesis and early embryonic development; (iii) heterogametic females synthesize and store during oogenesis itself morphogenetically essential gene products - including those encoded by Z-linked genes — in large quantities; (iv) the abundance of these gene products in the egg and their persistence relatively late into embryogenesis enables heterogametic females to overcome the monosomic state of the Z chromosome in ZW embryos. Female heterogamety is predominant in birds, reptiles and amphibians, all of which have megalecithal eggs containing several thousand times more maternal RNA and other maternal messages than eggs of mammals,Caenorhabditis elegans, orDrosophila. This increase in egg size, yolk content and, concomitantly, the size of the maternal legacy to the embryo, may have facilitated female heterogamety and the absence of dosage compensation.
Resumo:
Administration of noradrenaline inhibited the induction of hepatic trytophan pyrrolase by Cortisol but not by tryptophan. The selective inhibition of pyrrolase was specific to noradrenaline, whereas adrenaline and rat growth hormone also inhibited tyrosine aminotransferase. None of those three hormones had any effect on the incorporation of [32P]-orthophosphate into RNA, stimulated by cortisol. Other biogenic amines, polypeptide hormones and steroid analogues were not inhibitory to the induction of tryptophan pyrrolase by cortisol. The α-adrenergic agonist, phenylephrine, potentiated the noradrenaline inhibition whereas Image -threo-3,4-dihydroxyphenylserine, its precursor, together with pargyline had no effect on the induction process of pyrrolase. These results support the view that noradrenaline exerts its inhibitory action at the cell membrane via the α-receptor, and is not mediated directly by an intracellular mechanism.
Resumo:
A specific radioimmunoassay procedure was developed to monitor the plasma concentrations of thiamin-binding protein, a minor yolk constituent of the chicken egg. By using this sensitive assay, the kinetics of oestrogen-induced elaboration of this specific protein in immature chicks was investigated. After a single injection of the steroid hormone, with an initial lag period of 4–5h the thiamin-binding protein rapidly accumulated in the plasma, attaining peak concentrations around 75h and declining thereafter. A 4-fold amplification of the response was noticed during the secondary stimulation, and this increased to 9-fold during the tertiary stimulation with the steroid hormone. The magnitude of the response was dependent on the hormone dose, and the initial latent period and the duration of the ascending phase of induction were unchanged for the hormonal doses tested during both the primary and secondary stimulations. The circulatory half-life of the protein was 6h as calculated from the measurement of the rate of disappearance of the exogenously administered 125I-labelled protein. Simultaneous administration of progesterone, dihydrotestosterone or corticosterone did not alter the pattern of induction. On the other hand, hyperthyroidism markedly decreased the oestrogenic response, whereas propylthiouracil-induced hypothyroidism had the opposite effect. The anti-oestrogen E- and Z-clomiphene citrates, administered 30min before oestrogen, effectively blocked the hormonal induction. a-Amanitin and cycloheximide administered along with or shortly after the sex steroid severely curtailed the protein elaboration. A comparison of the kinetics of induction of thiamin- and riboflavin-binding proteins by oestrogen revealed that, beneath an apparent similarity, a clear-cut difference exists between the two vitamin-binding proteins, particularly with regard to hormonal dose-dependent sensitivity of induction and the half-life in circulation. The steroid-mediated elaboration of the two yolk proteins thus appears to be not strictly co-ordinated, despite several common regulatory features underlying their induction.
Resumo:
In mediating endocytosis of extracellular macromolecules; the major mechanism in which cells ingest nutrients, degrade hormones and maintain the protein and lipid compositions of their organelle membrane, the cell surface receptors encounter 'coated pits', migrate continuously from one organelle to another, deliver the 'cargo' and often recycle back to the cell surface. This article is an attempt to give an account of the recent advances in our understanding of the molecular events involved in the 'round trip itinerary' of cell surface receptors.
Resumo:
The expression of cytochrome P-450 (b+e) and glutathione transferase (Ya+Yc) genes has been studied as a function of development in rat liver. The levels of cytochrome P-450 (b+e) mRNAs and their transcription rates are too low for detection in the 19-day old fetal liver before or after phenobarbitone treatment. However, glutathione transferase (Ya+Yc) mRNAs can be detected in the fetal liver as well as their induction after phenobarbitone treatment can be demonstrated. These mRNAs contents as well as their inducibility with phenobarbitone are lower in maternal liver than that of adult nonpregnant female rat liver. Steroid hormone administration to immature rats blocks substantially the phenobarbitone mediated induction of the two mRNA families as well as their transcription. It is suggested that steroid hormones constitute one of the factors responsible for the repression of the cytochrome P-450 (b+e) and glutathione transferase (Ya+Yc) genes in fetal liver.
Resumo:
The current standard of care for hepatitis C virus (HCV) infection - combination therapy with pegylated interferon and ribavirin - elicits sustained responses in only similar to 50% of the patients treated. No alternatives exist for patients who do not respond to combination therapy. Addition of ribavirin substantially improves response rates to interferon and lowers relapse rates following the cessation of therapy, suggesting that increasing ribavirin exposure may further improve treatment response. A key limitation, however, is the toxic side-effect of ribavirin, hemolytic anemia, which often necessitates a reduction of ribavirin dosage and compromises treatment response. Maximizing treatment response thus requires striking a balance between the antiviral and hemolytic activities of ribavirin. Current models of viral kinetics describe the enhancement of treatment response due to ribavirin. Ribavirin-induced anemia, however, remains poorly understood and precludes rational optimization of combination therapy. Here, we develop a new mathematical model of the population dynamics of erythrocytes that quantitatively describes ribavirin-induced anemia in HCV patients. Based on the assumption that ribavirin accumulation decreases erythrocyte lifespan in a dose-dependent manner, model predictions capture several independent experimental observations of the accumulation of ribavirin in erythrocytes and the resulting decline of hemoglobin in HCV patients undergoing combination therapy, estimate the reduced erythrocyte lifespan during therapy, and describe inter-patient variations in the severity of ribavirin-induced anemia. Further, model predictions estimate the threshold ribavirin exposure beyond which anemia becomes intolerable and suggest guidelines for the usage of growth hormones, such as erythropoietin, that stimulate erythrocyte production and avert the reduction of ribavirin dosage, thereby improving treatment response. Our model thus facilitates, in conjunction with models of viral kinetics, the rational identification of treatment protocols that maximize treatment response while curtailing side effects.
Resumo:
We have examined the monthly variations in sperm output and attempted to correlate the profiles of endocrine hormones secreted with the sperm counts throughout the ,year in the adult male bonnet monkey. As previously reported, there was a distinct spurt in sperm output beginning September through December months. A concomitant increase in serum testosterone and prolactin concentrations were also noted during September through November (mid and post-monsoon season). Although there was a marked increase in gonadotropin releasing hormone stimulated testosterone secretion, the peak testosterone concentrations post gonadotropin releasing hormone injection did not vary significantly (P>0.05) throughout the year. Basal serum follicle stimulating hormone concentrations did not vary significantly (P>0.05) during April to June months compared to September-November months. Serum inhibin concentration remained unaltered throughout the year, except in the month of March. The results of this study provide evidence for annual rhythms in prolactin and testosterone secretion and a distinct seasonality in the sperm output of the adult male bonnet monkey, but the pituitary responsiveness to exogenous gonadotropin releasing hormone remains unaltered throughout the year. Because of the existence of seasonality as noted in the present study, future studies which utilize the adult male bonnet monkey as an experimental model need to take into consideration the seasonal effects on reproductive function in this species.
Resumo:
PROBLEM: It is yet to be determined clearly whether the two hormones FSH and T act synergistically in the same cell type-the Sertoli cells-to control overall spermatogenesis or influence independently the transformation of specific germ cell types during spermatogenesis in the adult mammal. METHOD: Adult male bonnet monkeys specifically deprived of either FSH or LH using immunoneutralization techniques were monitored for changes in testicular germ cell transformation by DNA flow cytometry. RESULTS: FSH deprivation caused a significant reduction (>40%; P < 0.05) in [H-3] thymidine incorporation into DNA of proliferating 2C (spermatogonial) cells, a marked inhibition (>50%) in the transformation of 2C to primary spermatocytes (4C) and a concomitant, belated reduction (50%) in the formation of round spermatids (1C). In contrast, specific LH/T deprivation led to an immediate arrest in the meiotic transformation of 4C to 1C/HC leading to an effective and significant block (<90%; P < 0.01) in sperm production. CONCLUSION: Thus, LH rather than FSH deprivation has a more pronounced and immediate effect as the former primarily blocks meiosis (4C --> 1C/HC) which controls production of spermatids. These data provide evidence for LH/T and FSH regulating spermatogenic process in the adult primate by primarily acting at specific germ cell transformation steps.
Resumo:
The relative regulatory roles of the pituitary gonadotropins, luteinizing hormone and follicle stimulating hormone in the spermatogonial proliferation has been studied using specific antibodies against these hormones in the immature rats. Immunoneutralization of luteinizing hormone for 7 days resulted in significant reduction in tetraploid cells and total absence of haploid cells, while there was a relative increase in the diploid population. This was also accomopanied by a decrease in spermatogonial proliferation as indicated by a decrease in [H-3] thymidine incorporation into DNA by purified spermatogonia. Administration bf follicle stimulating hormone als for 7 days also caused a significant decrease in the rate of spermatogonial proliferation. Withdrawal of follicle stimulating hormone led to a significant reduction in tetraploid and haploid cells However interestingly, it failed to totally abolish the appearance of these cells. Administration of testosterone (3mg/day/rat) for 2 days along with the gonadotropin a/s could partially reverse the effect on spermatogonial proliferation. It is concluded that (i) both luteinizing hormone and follicle stimulating hormone are involved in spermatogonial proliferation, (ii) lack of testosterone consequent of the neutralization of luteinizing hormone prevented the entry of spermatogonial cells into meiosis, (iii) testosterone may be involved in spermatogonial proliferation providing a mitotic signal and (v) both follicle stimulating hormone and testosterone act synergistically and lack of any one of the hormones results in impairment of spermatogonial proliferation.
Resumo:
Integral membrane proteins have one or more transmembrane a-helical domains and carry out a variety of functions such as enzyme catalysis, transport across membranes, transducing signals as receptors of hormones and growth factors, and energy transfer in ATP synthesis. These transmembrane domains are not mere structural units anchoring the protein to the lipid bilayer but seem to-contribute in the overall activity. Recent findings in support of this are described using some typical examples-LDL receptor, growth factor receptor tyrosine kinase, HMG-CoA reductase, F-0-ATPase and adrenergic receptors. The trends in research indicate that these transmembrane domains participate in a variety of ways such as a linker, a transducer or an exchanger in the overall functions of these proteins in transfer of materials, energy and signals.
Resumo:
The selective withdrawal of pituitary gonadotropins through specific antibodies is known to cause disruption of spermatogenesis. The cellular mechanism responsible for the degenerative changes under isolated effect of luteinizing hormone (LH) deprivation is not clear. Using antibodies specific to LH we have investigated the effect of immunoneutralization of LH on apoptotic cell death in the testicular cells of the immature and the adult rats. Specific neutralization of LH resulted in apoptotic cell death of germ cells, both in the immature and the adult rats. The germ cells from control animals showed predominantly high molecular weight DNA, while the antiserum treated group showed DNA cleavage into low molecular weight DNA ladder characteristic of apoptosis. This pattern could be observed within 24 h of a/s administration and the effect could be reversed by testosterone. The germ cells were purified by centrifugal elutriation and the vulnerability of germ cell types to undergo apoptosis under LH deprivation was investigated. The round spermatids and the pachytene spermatocytes were found to be the most sensitive germ cells to lack of LH and underwent apoptosis. Interestingly, spermatogonial cells were found to be the least sensitive germ cells to the lack of LH in terms of apoptotic cell death. Results show that LH, in addition to being involved in the germ cell differentiation, is also involved in cell survival and prevent degeneration of germ cells during spermatogenesis. Apoptotic DNA fragmentation may serve as a useful marker for the study of hormonal regulation of spermatogenesis and the specific neutralization of gonadotropic hormones can be a reliable model for the study of the molecular mechanism of apoptosis.
Resumo:
A study of 140 days duration was performed to examine if human male volunteers (n = 5) respond to ovine follicle stimulating hormone (oFSH) immunization (administered adsorbed on Alugel on days 1, 20, 40 and 70) by producing antibodies capable of both binding and neutralizing bioactivity of human FSH. The kinetics of antibody production for both the immunogen (oFSH) and the cross-reactive antigen (hFSH) were essentially similar, The volunteers responded only to the first two immunizations, The boosters given on days 40 and 70 were ineffective, probably because of the presence of substantial amounts of circulating antibody to oFSH. Of the antibodies generated to oFSH, 25-45% bound hFSH with a mean binding affinity of 0.65 x 10(9) +/- 0.53 M(-1). The binding capacities at the time of high (30-80 days of immunization) and low (>110 days) titres were 346 +/- 185 and 10.5 +/- 5.8 ng hFSH/ml respectively, During the period of high titre, free serum FSH (value in normal males 1-5 ng/ml) was not monitorable, A 50 mu l aliquot of the antiserum obtained from different volunteers between days 30 and 80 and on day 140 blocked binding of I-125-labelled hFSH to its receptor by 82 +/- 9.7 and 53 +/- 12.2% respectively, The antibody produced was specific for FSH, and no significant change in the values of related glycoprotein hormones (luteinizing hormone/testosterone and thyroid stimulating hormone/thyroxine) were recorded, Seminal plasma transferrin, a marker of Sertoli cell as well as of seminiferous tubular function, showed marked reduction (30-90%) following immunization with oFSH. Considering that endogenous FSH remained neutralized for approximately one sperm cycle only (65 days), the reduction in sperm counts (30-74%) exhibited by some volunteers is encouraging, Immunization with oFSH did not result in any significant changes in haematology, serum biochemistry or hormonal profiles, There was no production of antibodies capable of interacting with non-specific tissues, It is concluded that it should be possible to obtain a sustained long-term blockade of endogenous FSH action in men by using oFSH as an immunogen, This is a prerequisite for obtaining significant reduction in the quality and quantity of spermatozoa produced, thus leading to infertility.
Resumo:
Antipeptide and antiidiotypic antibodies to several receptors are known to mimic their respective ligands in transducing signals on binding their receptors. In our attempts to study gonadotropin releasing hormone receptor, antipeptide and antiidiotypic monoclonal antibodies specific to the receptor were established earlier. The antipeptide mAb F1G4 was to a synthetic peptide corresponding to the extracellular domain of human GnRH receptor and the antiidiotypic mAb 4D10C1 was to the idiotype of a GnRH specific mAb. Here we report the physiological effects of the two mAbs on binding the receptor, as investigated using in vitro cultures of(a) human term placental villi and (b) rat pituitaries. The mAb 4D10C1 exerted a dose-dependent release of human chorionic gonadonopin in cultures of human term placental villi as well as luteinising and follicle stimulating hormones in cultures of rat pituitaries.