69 resultados para wall cavities
Resumo:
This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.
Resumo:
We have explored the mechanism of spin-torque-driven domain-wall (DW) depinning in cylindrical nanowires of nickel using noise in electrical resistance. We find that the spectral slope of noise is a sensitive probe to the DW kinetics that reveals a creeplike behavior of the DWs at the depinning threshold, and diffusive DW motion at higher spin-torque drive. Different regimes of DW kinetics were characterized by universal kinetic exponents.
Resumo:
We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers (10(5) < Ra < 10(11)) and at three Prandtl numbers (Pr = 0.7, 5.2, 602). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of near-wall plumes on horizontal surfaces in turbulent convection. The plume length per unit area (L(p)/A), made dimensionless by the near-wall length scale in turbulent convection (Z(w)), remains constant for a given fluid. The Nusselt number is shown to be directly proportional to L(p)H/A for a given fluid layer of height H. The increase in Pr has a weak influence in decreasing L(p)/A. These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.
Resumo:
Candida albicans, a human fungal pathogen, undergoes morphogenetic changes that are associated with virulence. We report here that GAL102 in C. albicans encodes a homolog of dTDP-glucose 4,6-dehydratase, an enzyme that affects cell wall properties as well as virulence of many pathogenic bacteria. We found that GAL102 deletion leads to greater sensitivity to antifungal drugs and cell wall destabilizing agents like Calcofluor white and Congo red. The mutant also formed biofilms consisting mainly of hyphal cells that show less turgor. The NMR analysis of cell wall mannans of gal102 deletion strain revealed that a major constituent of mannan is missing and the phosphomannan component known to affect virulence is greatly reduced. We also observed that there was a substantial reduction in the expression of genes involved in biofilm formation but increase in the expression of genes encoding glycosylphosphatidylinositol-anchored proteins in the mutant. These, along with altered mannosylation of cell wall proteins together might be responsible for multiple phenotypes displayed by the mutant. Finally, the mutant was unable to grow in the presence of resident peritoneal macrophages and elicited a weak pro-inflammatory cytokine response in vitro. Similarly, this mutant elicited a poor serum pro-inflammatory cytokine response as judged by IFN gamma and TNF alpha levels and showed reduced virulence in a mouse model of systemic candidiasis. Importantly, an Ala substitution for a conserved Lys residue in the active site motif YXXXK, that abrogates the enzyme activity also showed reduced virulence and increased filamentation similar to the gal102 deletion strain. Since inactivating the enzyme encoded by GAL102 makes the cells sensitive to antifungal drugs and reduces its virulence, it can serve as a potential drug target in combination therapies for C. albicans and related pathogens.
Resumo:
Dendritic rnicroenvironments defined by dynamic internal cavities of a dendrimer were probed through geometric isomerization of stilbene and azobenzene. A third-generation poly(alkyl aryl ether) dendrimer with hydrophilic exterior and hydrophobic interior was used as a reaction cavity in aqueous medium. The dynamic inner cavity sizes were varied by utilizing alkyl linkers that connect the branch junctures from ethyl to n-pentyl moiety (C(2)G(3)-C(5)G(3)). Dendrimers constituted with n-pentyl linker were found to afford higher solubilities of stilbene and azobenzene. Direct irradiation of trans-stilbene showed that C(5)G(3) and C(4)G(3) dendrimers afforded considerable phenanthrene formation, in addition to cis-stilbene, whereas C(3)G(3) and C(2)G(3) gave only cis-stilbene. An electron-transfer sensitized trans-cis isomerization, using cresyl violet perchlorate as the sensitizer, also led to similar results. Thermal isomerization of cis-azobenzene to trans-azobenzene within dendritic microenvironments revealed that the activation energy of the cis- to trans-isomer was increasing in the series C(5)G(3) < C(4)G(3) < C(3)G(3)
Resumo:
In this work, we present field emission characteristics of multi-wall carbon nanotube (MWCNT)-polystyrene composites at various weight fractions along the cross-section of sample. Scanning electron microscope images in cross-sectional view reveal that MWCNTs are homogeneously distributed across the thickness and the density of protruding tubes can be scaled with weight fraction of the composite film. Field emission from composites has been observed to vary considerably with density of MWCNTs in the polymer matrix. High current density of 100 mA/cm(2) was achieved at a field of 2.2 V/lm for 0.15 weight fraction. The field emission is observed to follow the Fowler-Nordheim tunneling mechanism, however, electrostatic screening is observed to play a role in limiting the current density at higher weight fractions. (C) 2012 American Institute of Physics. [doi:10.1063/1.3685754]
Resumo:
This paper presents an investigation of the fluid flow in the fully developed portion of a rectangular channel (Aspect Ratio of 2) with dimples applied to one wall at channel Reynolds numbers of 20,000, 30,000, and 40,000. The dimples are applied in a staggered-row, racetrack configuration. Results for three different dimple geometries are presented: a large dimple, small dimple, and double dimple. Heat transfer and aerodynamic results from preceding works are presented in Nusselt number and friction factor augmentation plots as determined experimentally. Using particle image velocimetry, the region near the dimple feature is studied in detail in the location of the entrainment and ejection of vortical packets into and out of the dimple; the downstream wake region behind each dimple is also studied to examine the effects of the local flow phenomenon that result in improved heat transfer in the areas of the channel wall not occupied by a feature. The focus of the paper is to examine the secondary flows in these dimpled channels in order to support the previously presented heat transfer trends. The flow visualization is also intended to improve the understanding of the flow disturbances in a dimpled channel; a better understanding of these effects would lead the development of more effective channel cooling designs. Copyright © 2011 by ASME.
Resumo:
The charge transport in sulfonated multi-wall carbon nanotube (sMWNT)-Nafion composite is reported. The scanning electron microscope images of the composite, at 1 and 10 wt % of sMWNT, show that the nanotubes are well dispersed in polymer matrix, with conductivity values of 0.005 and 3.2 S/cm, respectively; and the percolation threshold is nearly 0.42 wt. %. The exponent (∼0.25) of the temperature dependence of conductivity in both samples indicates Mott's variable range hopping (VRH) transport. The conductance in 1 wt. % sample increases by three orders of magnitude at high electric-fields, consistent with VRH model. The negative magnetoresistance in 10 wt. % sample is attributed to the forward interference scattering mechanism in VRH transport. The ac conductance in 1 wt. % sample is expressed by σ(ω)∝ωs, and the temperature dependence of s follows the correlated barrier hopping model.
Resumo:
An E-plane rectangular folded-waveguide slow-wave structure with metal grating on the broad wall of the waveguide along the direction of the electric field has been proposed and analyzed for the dispersion and interaction impedance characteristics through three dimensional electromagnetic modeling in CST Studio. The effects of the presence of grating on the bandwidth and interaction impedance are demonstrated.
Resumo:
A dynamical instability is observed in experimental studies on micro-channels of rectangular cross-section with smallest dimension 100 and 160 mu m in which one of the walls is made of soft gel. There is a spontaneous transition from an ordered, laminar flow to a chaotic and highly mixed flow state when the Reynolds number increases beyond a critical value. The critical Reynolds number, which decreases as the elasticity modulus of the soft wall is reduced, is as low as 200 for the softest wall used here (in contrast to 1200 for a rigid-walled channel) The instability onset is observed by the breakup of a dye-stream introduced in the centre of the micro-channel, as well as the onset of wall oscillations due to laser scattering from fluorescent beads embedded in the wall of the channel. The mixing time across a channel of width 1.5 mm, measured by dye-stream and outlet conductance experiments, is smaller by a factor of 10(5) than that for a laminar flow. The increased mixing rate comes at very little cost, because the pressure drop (energy requirement to drive the flow) increases continuously and modestly at transition. The deformed shape is reconstructed numerically, and computational fluid dynamics (CFD) simulations are carried out to obtain the pressure gradient and the velocity fields for different flow rates. The pressure difference across the channel predicted by simulations is in agreement with the experiments (within experimental errors) for flow rates where the dye stream is laminar, but the experimental pressure difference is higher than the simulation prediction after dye-stream breakup. A linear stability analysis is carried out using the parallel-flow approximation, in which the wall is modelled as a neo-Hookean elastic solid, and the simulation results for the mean velocity and pressure gradient from the CFD simulations are used as inputs. The stability analysis accurately predicts the Reynolds number (based on flow rate) at which an instability is observed in the dye stream, and it also predicts that the instability first takes place at the downstream converging section of the channel, and not at the upstream diverging section. The stability analysis also indicates that the destabilization is due to the modification of the flow and the local pressure gradient due to the wall deformation; if we assume a parabolic velocity profile with the pressure gradient given by the plane Poiseuille law, the flow is always found to be stable.
Resumo:
Residue depth accurately measures burial and parameterizes local protein environment. Depth is the distance of any atom/residue to the closest bulk water. We consider the non-bulk waters to occupy cavities, whose volumes are determined using a Voronoi procedure. Our estimation of cavity sizes is statistically superior to estimates made by CASTp and VOIDOO, and on par with McVol over a data set of 40 cavities. Our calculated cavity volumes correlated best with the experimentally determined destabilization of 34 mutants from five proteins. Some of the cavities identified are capable of binding small molecule ligands. In this study, we have enhanced our depth-based predictions of binding sites by including evolutionary information. We have demonstrated that on a database (LigASite) of similar to 200 proteins, we perform on par with ConCavity and better than MetaPocket 2.0. Our predictions, while less sensitive, are more specific and precise. Finally, we use depth (and other features) to predict pK(a)s of GLU, ASP, LYS and HIS residues. Our results produce an average error of just <1 pH unit over 60 predictions. Our simple empirical method is statistically on par with two and superior to three other methods while inferior to only one. The DEPTH server (http://mspc.bii.a-star.edu.sg/depth/) is an ideal tool for rapid yet accurate structural analyses of protein structures.
Resumo:
The effect of partial heating/cooling of the wall on the mixed convection with thermal radiation in incompressible laminar pipe flow has been investigated. The gas is assumed to be gray, emitting and absorbing with constant thermophysical properties except the density variation in the buoyancy term. The partial heating/cooling of the wall has significant effect on the Nusselt number. The radiation parameter increases the heat transfer, but reduces the effect of buoyancy. The heat transfer also increases with the optical thickness until a certain value, beyond which it decreases.
Resumo:
In well dispersed multi-wall carbon nanotube-polystyrene composite of 15 wt%, with room temperature conductivity of similar to 5 S/cm and resistivity ratio R-2K/R-200K] of similar to 1.4, the temperature dependence of conductivity follows a power-law behavior. The conductivity increases with magnetic field for a wide range of temperature (2-200 K), and power-law fits to conductivity data show that localization length (xi) increases with magnetic field, resulting in a large negative magnetoresistance (MR). At 50T, the negative MR at 8 K is similar to 13% and it shows a maximum at 90K (similar to 25%). This unusually large negative MR indicates that the field is delocalizing the charge carriers even at higher temperatures, apart from the smaller weak localization contribution at T < 20 K. This field-induced delocalization mechanism of MR can provide insight into the intra and inter tube transport. (C) 2013 Elsevier Ltd. All rights reserved.