64 resultados para velocity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been well recognized now that the blast furnace aerodynamics can be represented more accurately under the decreasing gas velocity condition. Therefore, gas-fines study has been carried out in a packed bed under the decreasing gas velocity condition. Gas and fines flow equations have been developed and solved, for two-dimensional case using finite volume method. To take into account the turbulence, k-e turbulent flow model has also been developed in two-dimension. The model's predictions have been validated against the published experimental data for the increasing gas velocity case, as no experimental data are available in open literature for the decreasing gas velocity. This study shows the difference in the results for increasing and decreasing gas velocity cases under various conditions which have been reported here. Implication of the results to the blast furnace condition has also been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we analyse simultaneous measurements (at 50 Hz) of velocity at several heights and shear stress at the surface made during the Utah field campaign for the presence of ranges of scales, where distinct scale-to-scale interactions between velocity and shear stress can be identified. We find that our results are similar to those obtained in a previous study [Venugopal et al., 2003] (contrary to the claim in V2003, that the scaling relations might be dependent on Reynolds number) where wind tunnel measurements of velocity and shear stress were analysed. We use a wavelet-based scale-to-scale cross-correlation to detect three ranges of scales of interaction between velocity and shear stress, namely, (a) inertial subrange, where the correlation is negligible; (b) energy production range, where the correlation follows a logarithmic law; and (c) for scales larger than the boundary layer height, the correlation reaches a plateau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic C-Scan is used very often to detect flaws and defects in the composite components resulted during fabrication and damages resulting from service conditions. Evaluation and characterization of defects and damages of composites require experience and good understanding of the material as they are distinctly different in composition and behavior as compared to conventional metallic materials. The failure mechanisms in composite materials are quite complex. They involve the interaction of matrix cracking, fiber matrix interface debonding, fiber pullout, fiber fracture and delamination. Generally all of them occur making the stress and failure analysis very complex. Under low-velocity impact loading delamination is observed to be a major failure mode. In composite materials the ultrasonic waves suffer high acoustic attenuation and scattering effect, thus making data interpretation difficult. However these difficulties can be overcome to a greater extent by proper selection of probe, probe parameter settings like pulse width, pulse amplitude, pulse repetition rate, delay, blanking, gain etc., and data processing which includes image processing done on the image obtained by the C-Scan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent simulations of the stretching of tethered biopolymers at a constant speed v (Ponmurugan and Vemparala, 2011 Phys. Rev. E 84 060101(R)) have suggested that for any time t, the distribution of the fluctuating forces f responsible for chain deformation is governed by a relation of the form P(+ f)/ P(- f) = expgamma f], gamma being a coefficient that is solely a function of v and the temperature T. This result, which is reminiscent of the fluctuation theorems applicable to stochastic trajectories involving thermodynamic variables, is derived in this paper from an analytical calculation based on a generalization of Mazonka and Jarzynski's classic model of dragged particle dynamics Mazonka and Jarzynski, 1999 arXiv:cond-\textbackslashmat/9912121v1]. However, the analytical calculations suggest that the result holds only if t >> 1 and the force fluctuations are driven by white rather than colored noise; they further suggest that the coefficient gamma in the purported theorem varies not as v(0.15)T-(0.7), as indicated by the simulations, but as vT(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-slag emulsion is an important process to enhance the reaction rate between the two phases; thus, it improves the heat and mass transfer of the process significantly. Various experimental studies have been carried out, and some system specific relations have been proposed by various investigators. A unified, theoretical study is lacking to model this complex phenomenon. Therefore, two simple models based on fundamental laws for metal droplet velocity (both ascending and descending) and bubble velocity, as well as its position at any instant of time, have been proposed. Analytical solutions have been obtained for the developed equations. Analytical solutions have been verified for the droplet velocity, traveling time, and size distribution in slag phase by performing high-temperature experiments in a Pb-salt system and comparing the obtained data with theory. The proposed model has also been verified with published experimental data for various liquid systems with a wide range of physical properties. A good agreement has been found between the analytical solution and the experimental and published data in all cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyses of the invariants of the velocity gradient ten- sor were performed on flow fields obtained by DNS of compressible plane mixing layers at convective Mach num- bers Mc=0:15 and 1.1. Joint pdfs of the 2nd and 3rd invariants were examined at turbulent/nonturbulent (T/NT) boundaries—defined as surfaces where the local vorticity first exceeds a threshold fraction of the maximum of the mean vorticity. By increasing the threshold from very small lev-els, the boundary points were moved closer into the turbulent region, and the effects on the pdfs of the invariants were ob-served. Generally, T/NT boundaries are in sheet-like regions at both Mach numbers. At the higher Mach number a distinct lobe appears in the joint pdf isolines which has not been ob-served/reported before. A connection to the delayed entrain-ment and reduced growth rate of the higher Mach number flow is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT (N-30) and SWV (V-s(30)) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V-s(30) and site class D and E based on N-30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N-30 and V-s(30) raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets of SPT and SWV data are used to develop a correlation between N-SPT and SWV. This represents a first attempt of seismic site classification and correlation between N-SPT and SWV in the Indo-Gangetic Basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helical propulsion is at the heart of locomotion strategies utilized by various natural and artificial swimmers. We used experimental observations and a numerical model to study the various fluctuation mechanisms that determine the performance of an externally driven helical propeller as the size of the helix is reduced. From causality analysis, an overwhelming effect of orientational noise at low length scales is observed, which strongly affects the average velocity and direction of motion of a propeller. For length scales smaller than a few micrometers in aqueous media, the operational frequency for the propulsion system would have to increase as the inverse cube of the size, which can be the limiting factor for a helical propeller to achieve locomotion in the desired direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes (M (w) > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity (V (s)) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets (V (s) profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity (V (s)30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V (s)30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V (s) and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as `V (s)' is a function of SPT-N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V (s) profiles of the study area for site response studies.