71 resultados para validity of tests
Resumo:
Substantial increase in competition compels design firms to develop new products at an increasingly rapid pace. This situation pressurizes engineering teams to develop better products and at the same time develop products faster [1]. Continuous innovation is a key factor to enable a company to generate profit on a continued basis, through the introduction of new products in the market – a prime intention for Product Lifecycle Management. Creativity, affecting a wide spectrum of business portfolios, is regarded as the crucial factor for designing products. A central goal of product development is to create products that are sufficiently novel and useful. This research focuses on the determination of novelty of engineering products. Determination of novelty is important for ascertaining the newness of a product, to decide on the patentability of the design, to compare designers' capability of solving problems and to ascertain the potential market of a product. Few attempts at measuring novelty is available in literature [2, 3, 4], but more in-depth research is required for assessing degree of novelty of products. This research aims to determine the novelty of a product by enabling a person to determine the degree of novelty in a product. A measure of novelty has been developed by which the degree of ''novelty'' of products can be ascertained. An empirical study has been conducted to determine the validity of this method for determining the 'novelty' of the products.
Resumo:
Process control rules may be specified using decision tables. Such a specification is superior when logical decisions to be taken in control dominate. In this paper we give a method of detecting redundancies, incompleteness, and contradictions in such specifications. Using such a technique thus ensures the validity of the specifications.
Resumo:
Finite element modeling can be a useful tool for predicting the behavior of composite materials and arriving at desirable filler contents for maximizing mechanical performance. In the present study, to corroborate finite element analysis results, quantitative information on the effect of reinforcing polypropylene (PP) with various proportions of nanoclay (in the range of 3-9% by weight) is obtained through experiments; in particular, attention is paid to the Young's modulus, tensile strength and failure strain. Micromechanical finite element analysis combined with Monte Carlo simulation have been carried out to establish the validity of the modeling procedure and accuracy of prediction by comparing against experimentally determined stiffness moduli of nanocomposites. In the same context, predictions of Young's modulus yielded by theoretical micromechanics-based models are compared with experimental results. Macromechanical modeling was done to capture the non-linear stress-strain behavior including failure observed in experiments as this is deemed to be a more viable tool for analyzing products made of nanocomposites including applications of dynamics. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background & objectives: There is a need to develop an affordable and reliable tool for hearing screening of neonates in resource constrained, medically underserved areas of developing nations. This study valuates a strategy of health worker based screening of neonates using a low cost mechanical calibrated noisemaker followed up with parental monitoring of age appropriate auditory milestones for detecting severe-profound hearing impairment in infants by 6 months of age. Methods: A trained health worker under the supervision of a qualified audiologist screened 425 neonates of whom 20 had confirmed severe-profound hearing impairment. Mechanical calibrated noisemakers of 50, 60, 70 and 80 dB (A) were used to elicit the behavioural responses. The parents of screened neonates were instructed to monitor the normal language and auditory milestones till 6 months of age. This strategy was validated against the reference standard consisting of a battery of tests - namely, auditory brain stem response (ABR), otoacoustic emissions (OAE) and behavioural assessment at 2 years of age. Bayesian prevalence weighted measures of screening were calculated. Results: The sensitivity and specificity was high with least false positive referrals for. 70 and 80 dB (A) noisemakers. All the noisemakers had 100 per cent negative predictive value. 70 and 80 dB (A) noisemakers had high positive likelihood ratios of 19 and 34, respectively. The probability differences for pre- and post- test positive was 43 and 58 for 70 and 80 dB (A) noisemakers, respectively. Interpretation & conclusions: In a controlled setting, health workers with primary education can be trained to use a mechanical calibrated noisemaker made of locally available material to reliably screen for severe-profound hearing loss in neonates. The monitoring of auditory responses could be done by informed parents. Multi-centre field trials of this strategy need to be carried out to examine the feasibility of community health care workers using it in resource constrained settings of developing nations to implement an effective national neonatal hearing screening programme.
Resumo:
Recent generic rearrangement of the circumtropical distributed skink genus `Mabuya' has raised a lot of debate. According to this molecular phylogeny based rearrangement, the tropical Asian members of this genus have been assigned to Eutropis. However, in these studies the Asian members of `Mabuya' were largely sampled from Southeast (SE) Asia with very few species from Indian subcontinent. To test the validity of this assignment and to determine the evolutionary origin of Indian members of this group we sequenced one nuclear and two mitochondrial genes from most of the species from the Indian subregion. The nuclear and mitochondrial trees generated from these sequences confirmed the monophyly of the tropical Asian Eutropis. Furthermore, in the tree based on the combined mitochondrial and nuclear dataset an endemic Indian radiation was revealed that was nested within a larger Asian clade. Results of dispersal-vicariance analysis and molecular dating suggested an initial dispersal of Eutropis from SE Asia into India around 5.5-17 million years ago, giving rise to the extant members of the endemic Indian radiation. This initial dispersal was followed by two back dispersals from India into SE Asia. We also discuss the relationships within the endemic Indian radiation and its taxonomic implications. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Structural adhesive bonding is widely used to execute assemblies in automobile and aerospace structures. The quality and reliability of these bonded joints must be ensured during service. In this context non destructive evaluation of these bonded structures play an important role. Evaluation of adhesively bonded composite single lap shear joints has been attempted through experimental approach. Series of tests, non-destructive as well as destructive were performed on different sets of carbon fiber reinforced polymer (CFRP) composite lap joint specimens with varied bond quality. Details of the experimental investigations carried out and the outcome are presented in this paper.
Resumo:
This paper considers the problem of weak signal detection in the presence of navigation data bits for Global Navigation Satellite System (GNSS) receivers. Typically, a set of partial coherent integration outputs are non-coherently accumulated to combat the effects of model uncertainties such as the presence of navigation data-bits and/or frequency uncertainty, resulting in a sub-optimal test statistic. In this work, the test-statistic for weak signal detection is derived in the presence of navigation data-bits from the likelihood ratio. It is highlighted that averaging the likelihood ratio based test-statistic over the prior distributions of the unknown data bits and the carrier phase uncertainty leads to the conventional Post Detection Integration (PDI) technique for detection. To improve the performance in the presence of model uncertainties, a novel cyclostationarity based sub-optimal PDI technique is proposed. The test statistic is analytically characterized, and shown to be robust to the presence of navigation data-bits, frequency, phase and noise uncertainties. Monte Carlo simulation results illustrate the validity of the theoretical results and the superior performance offered by the proposed detector in the presence of model uncertainties.
Resumo:
A thermoacoustic refrigerator driven by a thermoacoustic primemover is an effective way to produce durable and long lasting refrigeration due to high reliability, no exotic materials, and no moving parts. Resonator geometry is also one of the important factors that influence the performance of a thermoacoustic prime mover, namely, frequency. Computational fluid dynamics simulation of performance comparison of thermoacoustic prime mover with a straight and tapered resonator is chosen for the present study under an identical stack condition with the air as a working fluid. The frequency and pressure amplitude of oscillations obtained from simulation results were found to be more in the tapered resonator than the straight resonator. Apart from computational fluid dynamics simulation, the simulation studies have also been conducted using design environment for low-amplitude thermoacoustic energy conversion, which predicts the performance of thermoacoustic primemover comparatively well. Simulation results from computational fluid dynamics and design environment for low-amplitude thermoacoustic energy conversion were compared and found to be matching well, representing the good validity of computational fluid dynamics modeling.
Resumo:
Managing heat produced by computer processors is an important issue today, especially when the size of processors is decreasing rapidly while the number of transistors in the processor is increasing rapidly. This poster describes a preliminary study of the process of adding carbon nanotubes (CNTs) to a standard silicon paste covering a CPU. Measurements were made in two rounds of tests to compare the rate of cool-down with and without CNTs present. The silicon paste acts as an interface between the CPU and the heat sink, increasing the heat transfer rate away from the CPU. To the silicon paste was added 0.05% by weight of CNTs. These were not aligned. A series of K-type thermocouples was used to measure the temperature as a function of time in the vicinity of the CPU, following its shut-off. An Omega data acquisition system was attached to the thermocouples. The CPU temperature was not measured directly because attachment of a thermocouple would have prevented its automatic shut-off A thermocouple in the paste containing the CNTs actually reached a higher temperature than the standard paste, an effect easily explained. But the rate of cooling with the CNTs was about 4.55% better.
Resumo:
In this paper, we explore fundamental limits on the number of tests required to identify a given number of ``healthy'' items from a large population containing a small number of ``defective'' items, in a nonadaptive group testing framework. Specifically, we derive mutual information-based upper bounds on the number of tests required to identify the required number of healthy items. Our results show that an impressive reduction in the number of tests is achievable compared to the conventional approach of using classical group testing to first identify the defective items and then pick the required number of healthy items from the complement set. For example, to identify L healthy items out of a population of N items containing K defective items, when the tests are reliable, our results show that O(K(L - 1)/(N - K)) measurements are sufficient. In contrast, the conventional approach requires O(K log(N/K)) measurements. We derive our results in a general sparse signal setup, and hence, they are applicable to other sparse signal-based applications such as compressive sensing also.
Resumo:
We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, NaxWO(3) by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of NaxWO(3) reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in NaxWO(3). The possible origin of insulating phase in NaxWO(3) is due to the Anderson localization of all the states near E-F. The localization occurs because of the strong disorder arising from random distribution of Na+ ions in the WO3 lattice.
Resumo:
Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.
Resumo:
Geotextiles and geogrids have been in use for several decades in variety of geo-structure applications including foundation of embankments, retaining walls, pavements. Geocells is one such variant in geosynthetic reinforcement of recent years, which provides a three dimensional confinement to the infill material. Although extensive research has been carried on geocell reinforced sand, clay and layered soil subgrades, limited research has been reported on the aggregates/ballast reinforced with geocells. This paper presents the behavior of a railway sleeper subjected to monotonic loading on geocell reinforced aggregates, of size ranging from 20 to 75 mm, overlying soft clay subgrades. Series of tests were conducted in a steel test tank of dimensions 700 mm x 300 mm x 700 mm. In addition to the laboratory model tests, numerical simulations were performed using a finite difference code to predict the behavior of geocell reinforced ballast. The results from numerical simulations were compared with the experimental data. The numerical and experimental results manifested the importance that the geocell reinforcement has a significant effect on the ballast behaviour. The results depicted that the stiffness of underlying soft clay subgrade has a significant influence on the behavior of the geocell-aggregate composite material in redistributing the loading system.
Resumo:
Hanuman langur is one of the widely distributed and extensively studied non-human diurnal primates in India. Until recently it was believed to be a single species - Semnopithecus entellus. Recent molecular and morphological studies suggest that the Hanuman langurs consists of at least three species S. entellus, S. hypoleucos and S. priam. Furthermore, morphological studies suggested that both S. hypoleucos and S. priam have at least three subspecies in each. We explored the use of ecological niche modeling (ENM) to confirm the validity of these seven taxa and an additional taxon S. johnii belonging to the same genus. MaxEnt modeling tool was used with 19 bioclimatic, 12 vegetation and 6 hydrological environmental layers. We reduced total environmental variables to 14 layers after testing for collinearity and an independent test for model prediction was done using ENMTools. A total of 196 non-overlapping data points from primary and secondary sources were used as inputs for ENM. Results showed eight distinct ecological boundaries, corroborating the eight taxa mentioned above thereby confirming validity of these eight taxa. The study, for the first time provided ecological variables that determined the ecological requirements and distribution of members of the Hanuman langur species complex in the Indian peninsula.
Resumo:
Hanuman langur is one of the widely distributed and extensively studied non-human diurnal primates in India. Until recently it was believed to be a single species - Semnopithecus entellus. Recent molecular and morphological studies suggest that the Hanuman langurs consists of at least three species S. entellus, S. hypoleucos and S. priam. Furthermore, morphological studies suggested that both S. hypoleucos and S. priam have at least three subspecies in each. We explored the use of ecological niche modeling (ENM) to confirm the validity of these seven taxa and an additional taxon S. johnii belonging to the same genus. MaxEnt modeling tool was used with 19 bioclimatic, 12 vegetation and 6 hydrological environmental layers. We reduced total environmental variables to 14 layers after testing for collinearity and an independent test for model prediction was done using ENMTools. A total of 196 non-overlapping data points from primary and secondary sources were used as inputs for ENM. Results showed eight distinct ecological boundaries, corroborating the eight taxa mentioned above thereby confirming validity of these eight taxa. The study, for the first time provided ecological variables that determined the ecological requirements and distribution of members of the Hanuman langur species complex in the Indian peninsula.