108 resultados para ultrafine ferrite
Resumo:
This paper reports the dynamic compression behavior of ultrafine grained (Hf, Zr)B-2-SiC composites, sintered using reactive spark plasma sintering at 1600 degrees C for 10 min. Dynamic strength of similar to 2.3 GPa has been measured using Split Hopkinson Pressure Bar (SHPB) tests in a reproducible manner at strain rates of 800-1300 s(-1). A comparison with competing boride based armor ceramics, in reference to the spectrum of properties evaluated, establishes the potential of (Hf, Zr)B-2-SiC composites for armor applications. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Lightweight and flexible electromagnetic shielding materials were designed by selectively localizing multiwall carbon nanotubes (MWNTs) anchored magnetic nanoparticles in melt mixed co-continuous blends of polyvinylidene fluoride (PVDF) and poly(styrene-co-acrylonitrile) (SAN). In order to facilitate better dispersion, the MWNTs were modified using pyrenebutyric acid (PBA) via pi-pi stacking. While one of the two-targeted properties, i.e., high electrical conductivity, was achieved by PBA modified MWNTs, high magnetic loss was accomplished by introducing nickel (NF) or cobalt ferrites (CF). Moreover, the attenuation by absorption can be tuned either by using NF (58% absorption) or CF (64% absorption) in combination with PBA-MWNTs. More interestingly, when CF was anchored on to MWNTs via the pyrene derivative, the minimum reflection loss attained was -55 dB in the Ku band (12-18 GHz) frequency and with a large bandwidth. In addition, the EM waves were blocked mostly by absorption (70%). This study opens new avenues in designing flexible and lightweight microwave absorbers.
Resumo:
Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline due to its wide application in different fields. In the present work nickel ferrite nanoparticles were prepared by sol-gel citrate-nitrate method. Polyaniline/nickel ferrite nanocomposites were synthesized by a simple general and inexpensive in-situ polymerization in the presence of nickel ferrite nanoparticles. The effects of nickel ferrite nanoparticles on the DC-electrical and magnetic properties of polyaniline were investigated. The structural, morphological and thermal stability of nanocomposites were characterized by X-ray diffraction, FTIR, scanning electron micrograph and TGA. The DC conductivity of polyaniline/nickel ferrite nanocomposites have been measured as a function of temperature in the range of 80K to 300K. The magnetic properties of the nanocomposites were measured using vibrating sample magnetometer in the temperature range 300-10K up to 30 kOe magnetic field.
Resumo:
Ni2+ ion induced unusual conductivity reversal and an enhancement in the gas sensing properties of ferrites based gas sensors, is reported. The Co1-xNixFe2O4 (for x = 0, 0.5 and 1) nanoparticles were synthesized by wet chemical co-precipitation method and gas sensing properties were studied as a function of composition and temperature. The structural, morphological and microstructural characterization revealed crystallite size of in the range 10-20 nm with porous morphology consisting of nano-sized grains. The Energy Dispersive X-ray (EDX) mapping confirms homogeneous distribution of Co, Ni, Fe and O elements in the ferrites. The non-stoichiometry of the inverse spinel type ferrites and the relative concentration of Ni3+/Co3+ defects were studied using X-ray photoelectron spectroscopy. It is found that the addition of Ni2+ ions into cobalt ferrite shows preferred selectivity towards CO gas at high temperature (325 degrees C) and ethanol gas at low temperature (250 degrees C), unlike undoped cobalt ferrite or undoped nickel ferrite, which show similar response for both these gases. Moreover, an unusual conductivity reversal is observed, except cobalt ferrite due to the difference in reactivity of the gases as well as characteristic non-stoichiometry of ferrites. This behavior is highly gas ambient dependent and hence can be well-exploited for selective detection of gases. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Ultrafine-grained (UFG) materials with grain sizes in the submicrometer or nanometer range may be prepared through the application of severe plastic deformation (SPD) to bulk coarse-grained solids. These materials generally exhibit high strength but only very limited ductility in low-temperature testing, thereby giving rise to the so-called paradox of strength and ductility. This paradox is examined and a new quantitative diagram is presented which permits the easy insertion of experimental data. It is shown that relatively simple procedures are available for achieving both high strength and high ductility in UFG materials including processing the material to a very high strain and/or applying a very short-term anneal immediately after the SPD processing. Significant evidence is now available demonstrating the occurrence of grain boundary sliding in these materials at low temperatures, where this is attributed to the presence of non-equilibrium grain boundaries and the occurrence of enhanced diffusion along these boundaries.
Resumo:
Cost effective and low temperature synthesis methods namely solution combustion and hydrothermal methods were used to prepare chromium incorporated nanocrystalline zinc ferrites. The effect of incorporation of low concentration Cr3+ ions on the structural, morphological, magnetic and transport properties of the zinc ferrite compounds were investigated. The crystalline nature and size variation with chromium content were valid from powder x-ray diffraction. Particles size and crystallite size variation were valid from scanning electron microscopy and transmission electron microscopy respectively. With the increase in chromium incorporation, the crystallite and particles sizes were decreased. Fourier transform infrared spectroscopy (FTIR) studies confirmed the presence of strong metal-oxygen bonds. The elastic properties of the materials in both the methods were estimated by FTIR studies. Magnetic properties namely saturation magentization, remanent magnetization and coercivity values were decreased with increase in Cr3+ ions concentration. The dielectric properties of the samples decreased with increase in the Cr3+ ions. The dielectric constant was observed to be of the order of 10(6) at low frequency and almost 1 at higher frequency range. The activation energy estimated using Arrhenius plots was of the order of 0.182 eV and 0.368 eV respectively for the compounds prepared by solution combustion and hydrothermal methods. The emission spectra of the samples excited at 344 nm were reported using photoluminescence (PL) spectroscopy. Further, the approximate energy band gap(E-g) was estimated from PL studies. The E-g of the materials were lie in the range of 2.11-1.98 eV. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Despite being highly bioactive and biocompatible, the limitations of monolithic hydroxyapatite (HA) include extremely low fracture toughness, poor electrical conductivity. While addressing these issues, the present study demonstrates how CaTiO3 (CT) addition to HA can be utilized to obtain a combination of long crack fracture toughness (1.7 MPa m(1/2) SEVNB technique) and flexural strength of 98-155 MPa (3-point bending) and a moderate tensile strength (diametral compression) of 17-36 MPa. The enhancement in fracture resistance in spark plasma sintered HA-CT composites has been explained in reference to the observed twin morphology. TEM reveals the presence of twins in CT grains due to 1800 rotation about 101]. The measured properties along with our earlier reports on biocompatibility and electrical properties make HA-CT suitable for bone tissue engineering applications. When compared with other competing HA-based biocomposites, HA-CT composites are found to have a better combination of properties useful for medium load bearing implant applications. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Graphene oxide-CoFe2O4 nanoparticle composites were synthesized using a two step synthesis method in which graphene oxide was initially synthesized followed by precipitation of CoFe2O4 nanoparticles in a reaction mixture containing graphene oxide. Samples were extracted from the reaction mixture at different times at 80 degrees C. All the extracted samples contained CoFe2O4 nanoparticles formed over the graphene oxide. It was observed that the increase in the reflux time significantly increased the saturation magnetization value for the superparamagnetic nanoparticles in the composite. It was also noticed that the size of the nanoparticles increased with increase in the reflux time. Transverse relaxivity of the water protons increased monotonically with increase in the reflux time. Whereas, the longitudinal relaxivity value initially increased and then decreased with the reflux time. Graphene oxide-CoFe2O4 nanoparticle composites also exhibit biocompatibility towards the MCF-7 cell line.
Resumo:
The temperature and frequency dependence of dielectric permittivity and dielectric loss of nanosized Mn1-xZnxFe2O4 (for x = 0, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The impact of zinc substitution on the dielectric properties of the mixed ferrite is elucidated. Strong dielectric dispersion and broad relaxation were exhibited by Mn1-xZnxFe2O4. The variation of dielectric relaxation time with temperature suggests the involvement of multiple relaxation processes. Cole-Cole plots were employed as an effective tool for studying the observed phenomenon. The activation energies were calculated from relaxation peaks and Cole-Cole plots and found to be consistent with each other and indicative of a polaron conduction.
Resumo:
A room-temperature cathodic electrolytic process was developed in the laboratory to recover zinc from industrial leach residues. The various parameters affecting the electroleaching process were studied using a statistically designed experiment. To understand the mechanisms behind the electrode processes, cyclic voltammetry and galvanostatic studies were carried out. The role of Einh measurements in monitoring such an electroleaching procedure is also shown. Since significant amounts of iron were also present in the leach liquor, attempts were made to purify it before zinc recovery by electrowinning. Reductive dissolution and creation of anion vacancies were found to be responsible for the dissolution of zinc ferrite present in the leach residue. A flow sheet of the process is given.
Resumo:
High resolution electron microscopic (HREM) investigation of potassiumbeta-alumina and the related gallate and ferrite has revealed that whereas the aluminate and gallate are highly disordered, consisting of random sequence ofbeta andbetaPrime units, the ferrite is more ordered. The aluminate and gallate are sensitive to electron beam irradiation exhibiting beam-induced damage similar to sodiumbetaPrime-alumina. Significantly, the ferrite is beamstable, the difference in behaviour amongst these related oxides arising from the different mechanisms by which alkali metal nonstoichiometry is accommodated. Barium hexaaluminate and hexaferrite are both highly ordered; specimens prepared by the barium borate flux method exhibit a new radic3a×radic3a superstructure of the hexagonal magnetoplumbite cell.
Resumo:
The control of shapes of nanocrystals is crucial for using them as building blocks for various applications. In this paper, we present a critical overview of the issues involved in shape-controlled synthesis of nanostructures. In particular, we focus on the mechanisms by which anisotropic structures of high-symmetry materials (fcc crystals, for instance) could be realized. Such structures require a symmetry-breaking mechanism to be operative that typically leads to selection of one of the facets/directions for growth over all the other symmetry-equivalent crystallographic facets. We show how this selection could arise for the growth of one-dimensional structures leading to ultrafine metal nanowires and for the case of two-dimensional nanostructures where the layer-by-layer growth takes place at low driving forces leading to plate-shaped structures. We illustrate morphology diagrams to predict the formation of two-dimensional structures during wet chemical synthesis. We show the generality of the method by extending it to predict the growth of plate-shaped inorganics produced by a precipitation reaction. Finally, we present the growth of crystals under high driving forces that can lead to the formation of porous structures with large surface areas.
Resumo:
In this paper, we demonstrate a way to impart severe plastic deformation to magnesium at room temperature to produce ultrafine grain size of similar to 250 nm through equal channel angular extrusion (ECAE). The strategy to deform magnesium at lower temperature or to achieve such grain sizes has been proposed as: (i) to obtain a suitable initial orientation with high Schmid factor for basal slip and low Schmid factor for pyramidal/prismatic slip; (ii) to take advantage of low stacking fault energy of basal and high stacking fault energies of prismatic/pyramidal planes in order to relatively work-harden the basal plane with respect to the pyramidal/prismatic plane; and (iii) to lower the temperature of deformation in steps, leading to continual refinement of grains, resulting in finer grain size. The experimental as well as simulated texture of ECAE-processed samples indicate that the deformation mechanism leading to ultrafine grain size is slip-dominated. The recrystallization mechanism during ECAE has been found to be orientation-dependent. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ultrafine powders of (Ti1-xSnx)O2, 0
Resumo:
Rapidly solidified Al–Cr alloys up to 20 at. % Cr were studied to delineate the extent of crystalline and quasicrystalline phase formation in these alloys in comparison with as-cast alloys by using transmission electron microscopy and x-ray diffraction technique. The icosahedral quasicrystals are observed from 7 to 15 at. % Cr alloys, while equilibrium ?–Al11Cr2 phase is completely absent. Both rapid solidification and subsequent thermal decomposition studies indicate that the main competing phase is ?–Al2Cr up to 15 at. % Cr. Beyond this composition ?–Al4Cr is the dominant phase together with a small amount of ?4–Al7Cr3. We have shown that the electron diffraction patterns of Al–Cr quasicrystals are often associated with a diffuse intensity distribution, indicative of short-range order. The change in quasilattice constant with composition suggests the existence of structural vacancies. Further, a sudden change from coarse to ultrafine quasicrystalline grain structure in Al-7 at. % Cr alloy points to a change in nucleation mechanism from heterogeneous to homogeneous mode during the rapid solidification.