92 resultados para symbols
Resumo:
Distributed space-time block codes (DSTBCs) from complex orthogonal designs (CODs) (both square and nonsquare), coordinate interleaved orthogonal designs (CIODs), and Clifford unitary weight designs (CUWDs) are known to lose their single-symbol ML decodable (SSD) property when used in two-hop wireless relay networks using amplify and forward protocol. For such networks, in this paper, three new classes of high rate, training-symbol embedded (TSE) SSD DSTBCs are constructed: TSE-CODs, TSE-CIODs, and TSE-CUWDs. The proposed codes include the training symbols inside the structure of the code which is shown to be the key point to obtain the SSD property along with the channel estimation capability. TSE-CODs are shown to offer full-diversity for arbitrary complex constellations and the constellations for which TSE-CIODs and TSE-CUWDs offer full-diversity are characterized. It is shown that DSTBCs from nonsquare TSE-CODs provide better rates (in symbols per channel use) when compared to the known SSD DSTBCs for relay networks. Important from the practical point of view, the proposed DSTBCs do not contain any zeros in their codewords and as a result, antennas of the relay nodes do not undergo a sequence of switch on/off transitions within every codeword, and, thus, avoid the antenna switching problem.
Resumo:
A Space-Time Block Code (STBC) in K symbols (variables) is called g-group decodable STBC if its maximum-likelihood decoding metric can be written as a sum of g terms such that each term is a function of a subset of the K variables and each variable appears in only one term. In this paper we provide a general structure of the weight matrices of multi-group decodable codes using Clifford algebras. Without assuming that the number of variables in each group to be the same, a method of explicitly constructing the weight matrices of full-diversity, delay-optimal g-group decodable codes is presented for arbitrary number of antennas. For the special case of Nt=2a we construct two subclass of codes: (i) A class of 2a-group decodable codes with rate a2(a−1), which is, equivalently, a class of Single-Symbol Decodable codes, (ii) A class of (2a−2)-group decodable with rate (a−1)2(a−2), i.e., a class of Double-Symbol Decodable codes. Simulation results show that the DSD codes of this paper perform better than previously known Quasi-Orthogonal Designs.
Resumo:
Recently in, a framework was given to construct low ML decoding complexity Space-Time Block Codes (STBCs) via codes over the finite field F4. In this paper, we construct new full-diversity STBCs with cubic shaping property and low ML decoding complexity via codes over F4 for number of transmit antennas N = 2m, m >; 1, and rates R >; 1 complex symbols per channel use. The new codes have the least ML decoding complexity among all known codes for a large set of (N, R) pairs. The new full-rate codes of this paper (R = N) are not only information-lossless and fully diverse but also have the least known ML decoding complexity in the literature. For N ≥ 4, the new full-rate codes are the first instances of full-diversity, information-lossless STBCs with low ML decoding complexity. We also give a sufficient condition for STBCs obtainable from codes over F4 to have cubic shaping property, and a sufficient condition for any design to give rise to a full-diversity STBC when the symbols are encoded using rotated square QAM constellations.
Resumo:
This paper describes the efforts at MILE lab, IISc, to create a 100,000-word database each in Kannada and Tamil for the design and development of Online Handwritten Recognition. It has been collected from over 600 users in order to capture the variations in writing style. We describe features of the scripts and how the number of symbols were reduced to be able to effectively train the data for recognition. The list of words include all the characters, Kannada and Indo-Arabic numerals, punctuations and other symbols. A semi-automated tool for the annotation of data from stroke to word level is used. It segments each word into stroke groups and also acts as a validation mechanism for segmentation. The tool displays the stroke, stroke groups and aksharas of a word and hence can be used to study the various styles of writing, delayed strokes and for assigning quality tags to the words. The tool is currently being used for annotating Tamil and Kannada data. The output is stored in a standard XML format.
Resumo:
In this paper, we propose a novel heuristic approach to segment recognizable symbols from online Kannada word data and perform recognition of the entire word. Two different estimates of first derivative are extracted from the preprocessed stroke groups and used as features for classification. Estimate 2 proved better resulting in 88% accuracy, which is 3% more than that achieved with estimate 1. Classification is performed by statistical dynamic space warping (SDSW) classifier which uses X, Y co-ordinates and their first derivatives as features. Classifier is trained with data from 40 writers. 295 classes are handled covering Kannada aksharas, with Kannada numerals, Indo-Arabic numerals, punctuations and other special symbols like $ and #. Classification accuracies obtained are 88% at the akshara level and 80% at the word level, which shows the scope for further improvement in segmentation algorithm
Resumo:
It has been shown recently that the maximum rate of a 2-real-symbol (single-complex-symbol) maximum likelihood (ML) decodable, square space-time block codes (STBCs) with unitary weight matrices is 2a/2a complex symbols per channel use (cspcu) for 2a number of transmit antennas [1]. These STBCs are obtained from Unitary Weight Designs (UWDs). In this paper, we show that the maximum rates for 3- and 4-real-symbol (2-complex-symbol) ML decodable square STBCs from UWDs, for 2a transmit antennas, are 3(a-1)/2a and 4(a-1)/2a cspcu, respectively. STBCs achieving this maximum rate are constructed. A set of sufficient conditions on the signal set, required for these codes to achieve full-diversity are derived along with expressions for their coding gain.
Resumo:
In this paper, we present an unrestricted Kannada online handwritten character recognizer which is viable for real time applications. It handles Kannada and Indo-Arabic numerals, punctuation marks and special symbols like $, &, # etc, apart from all the aksharas of the Kannada script. The dataset used has handwriting of 69 people from four different locations, making the recognition writer independent. It was found that for the DTW classifier, using smoothed first derivatives as features, enhanced the performance to 89% as compared to preprocessed co-ordinates which gave 85%, but was too inefficient in terms of time. To overcome this, we used Statistical Dynamic Time Warping (SDTW) and achieved 46 times faster classification with comparable accuracy i.e. 88%, making it fast enough for practical applications. The accuracies reported are raw symbol recognition results from the classifier. Thus, there is good scope of improvement in actual applications. Where domain constraints such as fixed vocabulary, language models and post processing can be employed. A working demo is also available on tablet PC for recognition of Kannada words.
Resumo:
In this paper, we compare the experimental results for Tamil online handwritten character recognition using HMM and Statistical Dynamic Time Warping (SDTW) as classifiers. HMM was used for a 156-class problem. Different feature sets and values for the HMM states & mixtures were tried and the best combination was found to be 16 states & 14 mixtures, giving an accuracy of 85%. The features used in this combination were retained and a SDTW model with 20 states and single Gaussian was used as classifier. Also, the symbol set was increased to include numerals, punctuation marks and special symbols like $, & and #, taking the number of classes to 188. It was found that, with a small addition to the feature set, this simple SDTW classifier performed on par with the more complicated HMM model, giving an accuracy of 84%. Mixture density estimation computations was reduced by 11 times. The recognition is writer independent, as the dataset used is quite large, with a variety of handwriting styles.
Resumo:
For a family/sequence of Space-Time Block Codes (STBCs) C1, C2,⋯, with increasing number of transmit antennas Ni, with rates Ri complex symbols per channel use (cspcu), i = 1,2,⋯, the asymptotic normalized rate is defined as limi→∞ Ri/Ni. A family of STBCs is said to be asymptotically-good if the asymptotic normalized rate is non-zero, i.e., when the rate scales as a non-zero fraction of the number of transmit antennas, and the family of STBCs is said to be asymptotically-optimal if the asymptotic normalized rate is 1, which is the maximum possible value. In this paper, we construct a new class of full-diversity STBCs that have the least maximum-likelihood (ML) decoding complexity among all known codes for any number of transmit antennas N>;1 and rates R>;1 cspcu. For a large set of (R,N) pairs, the new codes have lower ML decoding complexity than the codes already available in the literature. Among the new codes, the class of full-rate codes (R=N) are asymptotically-optimal and fast-decodable, and for N>;5 have lower ML decoding complexity than all other families of asymptotically-optimal, fast-decodable, full-diversity STBCs available in the literature. The construction of the new STBCs is facilitated by the following further contributions of this paper: (i) Construction of a new class of asymptotically-good, full-diversity multigroup ML decodable codes, that not only includes STBCs for a larger set of antennas, but also either matches in rate or contains as a proper subset all other high-rate or asymptotically-good, delay-optimal, multigroup ML decodable codes available in the literature. (ii) Construction of a new class of fast-group-decodable codes (codes that combine the low ML decoding complexity properties of multigroup ML decodable codes and fast-decodable codes) for all even number of transmit antennas and rates 1 <; R ≤ 5/4.- - (iii) Given a design with full-rank linear dispersion matrices, we show that a full-diversity STBC can be constructed from this design by encoding the real symbols independently using only regular PAM constellations.
Resumo:
In this paper, we give a new framework for constructing low ML decoding complexity space-time block codes (STBCs) using codes over the Klein group K. Almost all known low ML decoding complexity STBCs can be obtained via this approach. New full- diversity STBCs with low ML decoding complexity and cubic shaping property are constructed, via codes over K, for number of transmit antennas N = 2(m), m >= 1, and rates R > 1 complex symbols per channel use. When R = N, the new STBCs are information- lossless as well. The new class of STBCs have the least knownML decoding complexity among all the codes available in the literature for a large set of (N, R) pairs.
Resumo:
It is well known that the space-time block codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD). The weight matrices of the square CODs are all unitary and obtainable from the unitary matrix representations of Clifford Algebras when the number of transmit antennas n is a power of 2. The rate of the square CODs for n = 2(a) has been shown to be a+1/2(a) complex symbols per channel use. However, SSD codes having unitary-weight matrices need not be CODs, an example being the minimum-decoding-complexity STBCs from quasi-orthogonal designs. In this paper, an achievable upper bound on the rate of any unitary-weight SSD code is derived to be a/2(a)-1 complex symbols per channel use for 2(a) antennas, and this upper bound is larger than that of the CODs. By way of code construction, the interrelationship between the weight matrices of unitary-weight SSD codes is studied. Also, the coding gain of all unitary-weight SSD codes is proved to be the same for QAM constellations and conditions that are necessary for unitary-weight SSD codes to achieve full transmit diversity and optimum coding gain are presented.
Resumo:
In this paper, we employ message passing algorithms over graphical models to jointly detect and decode symbols transmitted over large multiple-input multiple-output (MIMO) channels with low density parity check (LDPC) coded bits. We adopt a factor graph based technique to integrate the detection and decoding operations. A Gaussian approximation of spatial interference is used for detection. This serves as a low complexity joint detection/decoding approach for large dimensional MIMO systems coded with LDPC codes of large block lengths. This joint processing achieves significantly better performance than the individual detection and decoding scheme.
Resumo:
Bidirectional relaying, where a relay helps two user nodes to exchange equal length binary messages, has been an active area of recent research. A popular strategy involves a modified Gaussian MAC, where the relay decodes the XOR of the two messages using the naturally-occurring sum of symbols simultaneously transmitted by user nodes. In this work, we consider the Gaussian MAC in bidirectional relaying with an additional secrecy constraint for protection against a honest but curious relay. The constraint is that, while the relay should decode the XOR, it should be fully ignorant of the individual messages of the users. We exploit the symbol addition that occurs in a Gaussian MAC to design explicit strategies that achieve perfect independence between the received symbols and individual transmitted messages. Our results actually hold for a more general scenario where the messages at the two user nodes come from a finite Abelian group G, and the relay must decode the sum within G of the two messages. We provide a lattice coding strategy and study optimal rate versus average power trade-offs for asymptotically large dimensions.
Resumo:
Motivated by applications to distributed storage, Gopalan et al recently introduced the interesting notion of information-symbol locality in a linear code. By this it is meant that each message symbol appears in a parity-check equation associated with small Hamming weight, thereby enabling recovery of the message symbol by examining a small number of other code symbols. This notion is expanded to the case when all code symbols, not just the message symbols, are covered by such ``local'' parity. In this paper, we extend the results of Gopalan et. al. so as to permit recovery of an erased code symbol even in the presence of errors in local parity symbols. We present tight bounds on the minimum distance of such codes and exhibit codes that are optimal with respect to the local error-correction property. As a corollary, we obtain an upper bound on the minimum distance of a concatenated code.
Resumo:
For an n(t) transmit, nr receive antenna (n(t) x n(r)) MIMO system with quasi- static Rayleigh fading, it was shown by Elia et al. that space-time block code-schemes (STBC-schemes) which have the non-vanishing determinant (NVD) property and are based on minimal-delay STBCs (STBC block length equals n(t)) with a symbol rate of n(t) complex symbols per channel use (rate-n(t) STBC) are diversity-multiplexing gain tradeoff (DMT)-optimal for arbitrary values of n(r). Further, explicit linear STBC-schemes (LSTBC-schemes) with the NVD property were also constructed. However, for asymmetric MIMO systems (where n(r) < n(t)), with the exception of the Alamouti code-scheme for the 2 x 1 system and rate-1, diagonal STBC-schemes with NVD for an nt x 1 system, no known minimal-delay, rate-n(r) LSTBC-scheme has been shown to be DMT-optimal. In this paper, we first obtain an enhanced sufficient criterion for an STBC-scheme to be DMT optimal and using this result, we show that for certain asymmetric MIMO systems, many well-known LSTBC-schemes which have low ML-decoding complexity are DMT-optimal, a fact that was unknown hitherto.