76 resultados para suction
Resumo:
An exact solution to the problem of time-dependent motion of a viscous fluid in an annulus with porous walls is obtained under the assumption that the rate of suction at one wall is equal to the rate of injection at the other. Finite Hankel transform is used to obtain a closed-form solution for the axial velocity. The average axial velocity profiles are depicted graphically.
Resumo:
A performance prediction model generally applicable for volute-type centrifugal pumps has been extended to predict the dynamic characteristics of a pump during its normal starting and stopping periods. Experiments have been conducted on a volute pump with different valve openings to study the dynamic behaviour of the pump during normal start-up and stopping, when a small length of discharge pipeline is connected to the discharge flange of the pump. Such experiments have also been conducted when the test pump was part of a hydraulic system, an experimental rig, where it is pumping against three similar pumps, known as supply pumps, connected in series, with the supply pumps kept idle or running. Instantaneous rotational speed, flowrate, and delivery and suction pressures of the pump were recorded and it was observed in all the tested cases that the change of pump behaviour during the transient period was quasi-steady, which validates the quasi-steady approach presented in this paper. The nature of variation of parameters during the transients has been discussed. The model-predicted dynamic head-capacity curves agree well with the experimental data for almost all the tested cases.
Resumo:
Downward seepage (suction) increases the mobility of the channel. In this study, experimental investigations were carried out to analyse the suction effect on stream power along the downstream side of the flume. It was observed that stream power has a major influence on the stability and mobility of the bed particles, due to suction. Stream power is found to be greater at the upstream side and lower at the downstream side. This reduces the increment in the mobility of the sand particles due to suction at the downstream side. Thus, there is more erosion at the upstream side than the downstream side. It was also found that the amount of deposition of sand particles at the downstream side, because of the high stream power at the upstream side, is greater than the amount of erosion of sand particles from the downstream side.
Resumo:
In this numerical study, the unsteady laminar incompressible boundary-layer flow over a continuously stretching surface has been investigated when the velocity of the stretching surface varies arbitrarily with time. Both the nodal and the saddle point regions of flow have been considered for the analysis. Also, constant wall temperature/concentration and constant heat/mass flux at the stretching surface have been taken into account. The quasilinearisation method with an implicit finite-difference scheme is used in the nodal point region (0 less-than-or-equal-to c less-than-or-equal-to 1) where c denotes the stretching ratio. This method fails in the saddle point region (-1 less-than-or-equal-to c less-than-or-equal-to 0) due to the occurrence of reverse flow in the y-component of velocity. In order to overcome this difficulty, the method of parametric differentiation with an implicit finite-difference scheme is used, where the values at c = 0 are taken as starting values. Results have been obtained for the stretching velocities which are accelerating and decelerating with time. Results show that the skin friction, the heat transfer and the mass transfer parameters respond significantly to the time dependent stretching velocities. Suction (A > 0) is found to be an important parameter in obtaining convergent solution in the case of the saddle point region of flow. The Prandtl number and the Schmidt number strongly affect the heat and mass transfer of the diffusing species, respectively.
Resumo:
ExperimentS were conducted to find the effects of seepage on flow over a sand bed in a straight rectangular flume under two conditions: (1) When the channel bed is plane, horizontal, and nontransporting; and (2) when the bed is transporting at a constant sediment concentration. Effects of both injection and suction, caused by seepage flow into and out of the channel bed, are studied for condition 1; and only suction effects are studied for condition 2, Three sands, sizes 0.34 mm, 0.53 mm, and 0.80 mm, are used in the study. It is found that seepage can cause an increase or decrease in the bed shear stress relative to no seepage for the two conditions. The change in bed shear stress depends on the relative magnitudes of the bed shear stress and the critical shear stress of particles under the no-seepage condition, sediment concentration, and the seepage rate. Quantitative relationships giving the ratio of bed shear stresses with and without seepage are presented for both conditions of the bed. A procedure to estimate the changes in bed shear stress, friction factor, Manning's n, and stream power due to seepage for known initial conditions of the channel and the amount of applied seepage is presented
Resumo:
The variation of the drag force near the top portions of tall stacks with and without external landing platforms, and with the exit open and closed, has been examined by model studies in a wind tunnel at Reynolds numbers of about 10(5). Pressure measurements on three models of different height to diameter ratios have been supplemented by flow visualisation studies. Observations confirm that when there is no platform, significant load enhancement over the top three to four diameters occurs, due to the high suction caused by the sharp separation of the flow over the top from the rim, in the aft regions of the stack. The enhanced loading is found to be greater if the exit is closed. A platform at the top, of less than twice the exit diameter, further increases the drag force near the top, but a still larger platform at the top, of about three times the exit diameter, decreases the drag force to values less than those much further below, effectively nullifying the enhanced drag force. It was found that such a reduction of the enhanced drag force in the top regions can also be achieved by a smaller platform of 1.1 to 1.3 times the local diameter, located at about three to five diameters below the top.
Resumo:
A theoretical and experimental study has been carried out on the transient characteristics of a centrifugal pump during starting and stopping periods. Experiments have been conducted on a volute pump with different valve openings to study the dynamic behaviour of the pump during normal start up and stopping, when a small length of discharge pipe line is connected to discharge flange of the pump. Similar experiments have also been conducted when the test pump was part of a hydraulic system to study the system effect on the transient characteristics. Instantaneous rotational speed, flowrate, and delivery and suction pressures of the pump are recorded and it is observed in ail the tested cases that the change of pump behaviour during the transient period is quasi-steady. The dynamic characteristics of the pump have been analysed by a numerical model using the method of characteristics. The model is presented and the results are compared with the experimental data. As the model contains speed acceleration and unsteady discharge terms, the model can be applied for analyses of purely unsteady cases where the pump dynamic characteristics show considerable departure from their steady-state characteristics.
Resumo:
The present study examines the role of interparticle cementation in the collapse behavior of two partly saturated (S-r = 4 to 12%) and very highly porous (initial void ratio = 1.5 to 2) laboratory-desiccated clayey silt specimens containing varying amounts (5 and 15% by dry weight of the respective specimens) of the cementitious iron oxides hematite and goethite, which are generally encountered in tropical residual soils. Kaolinite is the representative clay mineral of the soil matrix used for this research. Interparticle cementation by the crystalline iron oxides was generated in the laboratory by repeated (six times) wetting and drying of the iron-hydroxide-admixed clayey silt specimens under ambient conditions of temperature and humidity. Results showed that, for a given laboratory-desiccated clayey silt specimen (i.e., a specimen containing 5 or 15% of iron oxide on a dry weight basis), the amount of collapse (represented by Delta epsilon, the change in vertical strain upon wetting under constant pressure) increases with an increase in the experimental loading under which the specimen is inundated. The laboratory results also show that the desiccated specimen with a higher iron oxide content (containing 15% iron oxide by dry weight of the desiccated specimen) in spite of a lower dry unit weight (gamma(d) = 8.8 kN/m(3)) undergoes a lesser amount of collapse on soaking under a constant external stress (50 or 100 kPa) than the desiccated specimen with a lower iron oxide content (i.e., containing 5% iron oxide by dry weight of the desiccated specimen, gamma(d) = 10.4 KN/m(3)). Based on the X-ray diffraction results and the stress-strain relationships obtained from isotropically consolidated undrained triaxial tests, it is suggested that the laboratory-desiccated specimens are characterized by a metastable bonding provided by capillary suction and the crystalline iron oxides. On soaking under load owing to the loss of the metastable bonding, collapse of the laboratory-desiccated specimens occurs. Also, in the case of the laboratory-desiccated specimen with a higher iron oxide content, the presence of a stronger interparticle cementation (due to a greater abundance of crystalline iron oxides) and a higher initial moisture content are considered responsible for the specimen exhibiting a lower amount of collapse in comparison to that exhibited by the desiccated specimen with a lesser iron oxide content.
Resumo:
The unsteady three-dimensional stagnation point Bow of a viscoelastic fluid has been studied. Both nodal and saddle point regions of How have been considered. The unsteadiness in the Bow field is caused by the free stream velocity which varies arbitrarily with time. The governing boundary layer equations represented by a system of nonlinear partial differential equations have been solved numerically using a finite-difference scheme along with the quasilinearization technique in the nodal point region and a finite-difference scheme in combination with the parametric differentiation technique in the saddle point region. The skin friction coefficients for the viscoelastic fluid are found to be significantly less than those of the Newtonian fluid. The skin friction and heat transfer increase due to suction and reduce due to injection. The heat transfer at the wall increases with the Prandtl number. There is a flow reversal in the y-component of the velocity in the saddle point region. The absolute value of c (<<<0) for which reversal takes place is less than that of the Newtonian fluid. (C) 1997 Elsevier Science Ltd.
Resumo:
Seepage effects on the stability, mobility, and incipient motion of sand-bed particles are experimentally investigated. Seepage through a sand bed in a downward direction (suction) reduces the stability of particles, and it can even initiate their movement. The bed erosion is increased with the increased rates of suction. Whereas the seepage in an upward direction (injection) increases the stability of bed particles, it does not aid initiating their movement. The rate of bed erosion is reduced or even stopped by the increased infection rates. Hydrodynamic conditions leading to the so-called "pseudoincipient motion'' with suction (for the initiation of particles movement that are otherwise at rest under no-seepage conditions), and with injection (for only arresting the particles movement that are otherwise moving initially) are evaluated. The conventional Shields curve cannot be used to predict such pseudoincipient motion conditions with seepage. The concepts thus developed are useful for a better understanding of the sediment transport mechanics and in the design of stable alluvial channels affected by seepage.
Resumo:
Residually derived red soils occur in Bangalore District of Karnataka State, India. The porous and unsaturated nature of the red soils makes them susceptible to collapse on wetting under load. The present study analyses the collapse behaviour of an unsaturated bonded (undisturbed) red soil from Bangalore referenced to tests on samples in an unbonded (remoulded) state. A filter paper method was used to determine the matric suction of the bonded and unbonded specimens, and mercury intrusion porosimetry (MIP) was used to determine their soil structure. Analysis of the experimental results shows that bonding plays an important role in the collapse behaviour of the unsaturated residual soil. The results of the study also provide insight into the volume change behaviour of unsaturated bonded soils on wetting within and beyond the yield locus.
Resumo:
To resolve many flow features accurately, like accurate capture of suction peak in subsonic flows and crisp shocks in flows with discontinuities, to minimise the loss in stagnation pressure in isentropic flows or even flow separation in viscous flows require an accurate and low dissipative numerical scheme. The first order kinetic flux vector splitting (KFVS) method has been found to be very robust but suffers from the problem of having much more numerical diffusion than required, resulting in inaccurate computation of the above flow features. However, numerical dissipation can be reduced by refining the grid or by using higher order kinetic schemes. In flows with strong shock waves, the higher order schemes require limiters, which reduce the local order of accuracy to first order, resulting in degradation of flow features in many cases. Further, these schemes require more points in the stencil and hence consume more computational time and memory. In this paper, we present a low dissipative modified KFVS (m-KFVS) method which leads to improved splitting of inviscid fluxes. The m-KFVS method captures the above flow features more accurately compared to first order KFVS and the results are comparable to second order accurate KFVS method, by still using the first order stencil. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.
Resumo:
The unsteady rotating flow of a laminar incompressible viscous electrically conducting fluid over a rotating sphere in the vicinity of the equator has been studied. The fluid and the body rotate either in the same direction or in opposite directions. The effects of surface suction and magnetic field have been included in the analysis. There is an initial steady state that is perturbed by a sudden change in the rotational velocity of the sphere, and this causes unsteadiness in the flow field. The nonlinear coupled parabolic partial differential equations governing the boundary-layer flow have been solved numerically by using an implicit finite-difference scheme. For large suction or magnetic field, analytical solutions have also been obtained. The magnitude of the radial, meridional and rotational velocity components is found to be higher when the fluid and the body rotate in opposite directions than when they rotate in the same direction. The surface shear stresses in the meridional and rotational directions change sign when the ratio of the angular velocities of the sphere and the fluid lambda greater than or equal to lambda(0). The final (new) steady state is reached rather quickly which implies that the spin-up time is small. The magnetic field and surface suction reduce the meridional shear stress, but increase the surface shear stress in the rotational direction.
Resumo:
In this paper, we report a significant improvement in mechanical properties of near eutectic Nb-Si alloys by addition of Gallium (Ga) and control of microstructural length scale. A comparative study of two alloys Nb-18.79 at.%Si and Nb-20.2 at.%Si-2.7 at.%Ga were carried out. The microstructure refinements were carried out by vacuum suction casting in water cooled thick copper mold. It is shown that addition of Ga suppresses Nb(3)Si phase and promotes beta-Nb(5)Si(3) phase. The microstructural length scale and in particular eutectic spacing reduces significantly to 50-100 nm in suction cast ternary alloys. Compression test shows a strength of 2.8 +/- 0.1 GPa and plasticity of 4.3 +/- 0.03%. In comparison, the binary Nb-18.79 at.%Si alloy processed under identical conditions exhibit coarser length scale (300-400 nm) and brittle behavior. The fracture toughness of Ga containing suction cast alloy shows a value of 24.11 +/- 0.5 MPa root m representing a major improvement for bulk Nb-Si eutectic alloy. (C) 2011 Elsevier Ltd. All rights reserved.