171 resultados para strain-compensation
Resumo:
A minor addition of B to the Ti-6Al-4V alloy, by similar to 0.1 wt pct, reduces its as-cast prior beta grain size by an order of magnitude, whereas higher B content leads to the presence of in situ formed TiB needles in significant amounts. An experimental investigation into the role played by these microstructural modifications on the high-temperature deformation behavior of Ti-6Al-4V-xB alloys, with x varying between 0 wt pct and 0.55 wt pct, was conducted. Uniaxial compression tests were performed in the temperature range of 1023 K to 1273 K (750 degrees C to 1000 degrees C) and in the strain rate range of 10(-3) to 10(+1) s(-1). True stress-true strain responses of all alloys exhibit flow softening at lower strain rates and oscillations at higher strain rates. The flow softening is aided by the occurrence of dynamic recrystallization through lath globularization in high temperature (1173 K to 1273 K 900 degrees C to 1000 degrees C]) and a lower strain rate (10(-2) to 10(-3) s(-1)) regime. The grain size refinement with the B addition to Ti64, despite being marked, had no significant effect on this. Oscillations in the flow curve at a higher strain rate (10(0) to 10(+1) s(-1)), however, are associated with microstructural instabilities such as bending of laths, breaking of lath boundaries, generation of cavities, and breakage of TiB needles. The presence of TiB needles affected the instability regime. Microstructural evidence suggests that the matrix cavitation is aided by the easy fracture of TiB needles.
Resumo:
This paper focuses on a new high-frequency (HF) link dc-to-three-phase-ac power converter. The least number of switching devices among other HF link dc-to-three-phase-ac converters, improved power density due to the absence of devices of bidirectional voltage-blocking capability, simple commutation requirements, and isolation between input and output are the integral features of this topology. The commutation process of the converter requires zero portions in the link voltage. This causes a nonlinear distortion in the output three-phase voltages. The mathematical analysis is carried out to investigate the problem, and suitable compensation in modulating signal is proposed for different types of carrier. Along with the modified modulator structure, a synchronously rotating reference-frame-based control scheme is adopted for the three-phase ac side in order to achieve high dynamic performance. The effectiveness of the proposed scheme has been investigated and verified through computer simulations and experimental results with 1-kVA prototype.
Resumo:
When the male is the heterogametic sex (XX♀-XY♂ or XX♀-XO♂), as inDrosophila, orthopteran insects, mammals andCaenorhabditis elegans, X-linked genes are subject to dosage compensation: the single X in the male is functionally equivalent to the two Xs in the female. However, when the female is heterogametic (ZZ♂-ZW♀), as in birds, butterflies and moths, Z-linked genes are apparently not dosage-compensated. This difference between X-linked and Z-linked genes raises fundamental questions about the role of dosage compensation. It is argued that (i) genes which require dosage compensation are primarily those that control morphogenesis and the prospective body plan; (ii) the products of these genes are required in disomic doses especially during oogenesis and early embryonic development; (iii) heterogametic females synthesize and store during oogenesis itself morphogenetically essential gene products - including those encoded by Z-linked genes — in large quantities; (iv) the abundance of these gene products in the egg and their persistence relatively late into embryogenesis enables heterogametic females to overcome the monosomic state of the Z chromosome in ZW embryos. Female heterogamety is predominant in birds, reptiles and amphibians, all of which have megalecithal eggs containing several thousand times more maternal RNA and other maternal messages than eggs of mammals,Caenorhabditis elegans, orDrosophila. This increase in egg size, yolk content and, concomitantly, the size of the maternal legacy to the embryo, may have facilitated female heterogamety and the absence of dosage compensation.
Resumo:
This paper presents test results for 22 high strength deformed bars and nine mild steel bars subjected to monotonic repeated and reversed axial loading to determine the stress-strain behavior. Equations have been proposed for the stress-strain curves and have been compared with test results. Satisfactory agreement was obtained.
Resumo:
The role of imposed strain on the room temperature time-dependent deformation behavior of bulk metallic glasses (BMGs) was systematically investigated through spherical nanoindentation creep experiments. The results show that creep occurred even at very low strains within elastic regimes and, interestingly, a precipitous increase in creep rate was found in plastic regimes, with BMG that had a higher free volume exhibiting greater creep rates. The results are discussed in terms of prevailing mechanisms of elastic/plastic deformation of amorphous alloys. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper presents test results for 22 high strength deformed bars and nine mild steel bars subjected to monotonic repeated and reversed axial loading to determine the stress-strain behavior. Equations have been proposed for the stress-strain curves and have been compared with test results. Satisfactory agreement was obtained.
Resumo:
The performance of a pressure transducer with meandering-path thin film strain gauges has been studied. Details of the procedure followed to prepare the thin film strain gauge system on the pressure transducer diaphragm are given. The effect of post-deposition heat treatment on the resistance of the sensing films of the strain gauges and the insulating base layers are discussed. The output of the pressure transducer was studied with various input pressures and excitation voltages. It was found that up to a maximum of 10 V bridge excitation the output was stable and repetitive. The maximum non-linearity and hysteresis observed are ±0.15%, ±0.16% and ±0.14% FSO (full-scale output) for 5, 7.5 and 10 V excitation respectively. Information on the output behaviour of the pressure transducer with temperature is also included.
Resumo:
Fracture behaviour of notched and un-notched plain concrete slender beams subjected to three-point or four-point bending is analyzed through a one-dimensional model, also called Softening Beam Model. Fundamental equations of equilibrium are used to develop the model. The influence of structural size in altering the fracture mode from brittle fracture to plastic collapse is explained through the stress distribution across the uncracked ligament obtained by varying the strain softening modulus. It is found that at the onset of fracture instability, stress at the crack tip is equal to zero. The maximum load and fracture load are found to be different and a unique value for the fracture load is obtained. It is shown that the length of the fracture process zone depends on the value of the strain softening modulus. Theoretical limits for fracture process zone length are also calculated. Several nonlinear fracture parameters, such as, crack tip opening displacement, crack mouth opening displacement and fracture energy are computed for a wide variety of beam specimens reported in the literature and are found to compare very well with experimental and theoretical results. It is demonstrated that by following a simple procedure, both pre-peak and post-peak portions of load versus crack mouth opening displacement curve can be obtained quite accurately. Further, a simple procedure to calculate the maximum load is also developed. The predicted values of maximum load are found to agree well with the experimental values. The Softening Beam Model (SBM), proposed in this investigation is very simple and is based on rational considerations. It can completely describe the fracture process from the beginning of formation of the fracture process zone till the onset of fracture instability.A l'aide d'un modèle unidimensionnel dit ldquoSoftening Beam Modelrdquo (SBM), on analyse le comportement à rupture de poutres élancées pleines entaillées ou non, soumises en flexion en trois ou quatre points. Des équations fondamentales d'équilibre sont utilisées pour développer le modèle. On explique l'influence de la taille du composant sur l'altération du mode de rupture en rupture fragile et en effondrement plastique par la distribution par la distribution des contraintes sur le ligament non fissuré lorsque varie le module d'adoucissement. On trouve que la contrainte à l'extrémité de la fissure est nulle est nulle au début de l'instabilité de la rupture. La charge maximum et la charge à la rupture sont trouvées différentes, et on obtient une valeur unique de la charge à la rupture. On montre que la longueur de la zone concernée par le processus de rupture d'pend de la valeur du module d'adoucissement. On calcule également les limites théoriques de longueur de cette zone. Divers paramètres de rupture non linéaire sont calculés pour une large gamme d'éprouvettes en poutres reprises dans la littérature; on trouve qu'il existe une bonne concordance avec les résultats expérimentaux et théoriques. On démontre qu'en suivant une procédure simple on peut obtenir avec une bonne précision la courbe reliant les portions avant et après le pic de sollicitation en fonction du COD de la fissure. En outre, on développe une procédure simple pour calculer la charge maximum. Les valeurs prédites sont en bon accord avec les valeurs expérimentales. Le modèle SBM proposé est très simple et est basé sur des considérations rationnelles. Il est susceptible de décrire complètement le processus de rupture depuis le début de la formation de la zone intéressée jusqu'à l'amorçage de la rupture instable.
Resumo:
The nucleotide sequence of genes 4 and 9, encoding the outer capsid proteins VP4 and VP7 of a serotype 10 tissue culture-adapted strain, 1321, representative of asymptomatic neonatal rotaviruses isolated from neonates in Bangalore, India, were determined. Comparison of nucleotide and deduced amino acid sequences of 1321 VP4 and VP7 with previously published sequences of various serotypes revealed that both genes were highly homologous to the respective genes of serotype 10 bovine rotavirus, B223. The VP4 of 1321 represents a new human P serotype and the 1321 and related strains represent the first description of neonatal rotaviruses that appear to derive both surface proteins from an animal rotavirus.
Resumo:
Stress relaxation testing is often utilised for determining whether athermal straining contributes to plastic flow; if plastic strain rate is continuous across the transition from tension to relaxation then plastic strain is fully thermally activated. This method was applied to an aged type 316 stainless steel tested in the temperature range 973–1123 K and to a high purity Al in the recrystallised annealed condition tested in the temperature range 274–417 K. The results indicated that plastic strain is thermally activated in these materials at these corresponding test temperatures. For Al, because of its high strain rate sensitivity, it was necessary to adopt a back extrapolation procedure to correct for the finite period that the crosshead requires to decelerate from the constant speed during tension to a dead stop for stress relaxation.
Resumo:
A diaphragm-type pressure transducer with a sputtered platinum film strain gauge (sensing film) has been designed and fabricated. The various steps followed to prepare thin film strain gauges on the diaphragm are described. M-bond 450 adhesive (Measurements Group, USA) has been employed as the insulating layer. A detailed procedure to cure this layer is given. A d.c. sputtering method is employed to prepare the platinum films. This paper also includes details of the strain gauge pattern and its location on the diaphragm. A description of the output characteristics and overall behaviour of the platinum thin film pressure transducer is reported.
Resumo:
Cylindrical specimens of commercial pure titanium have been compressed at strain rates in the range of 0.1 to 100 s-1 and temperatures in the range of 25-degrees-C to 400-degrees-C. At strain rates of 10 and 100 s-1, the specimens exhibited adiabatic shear bands. At lower strain rates, the material deformed in an inhomogeneous fashion. These material-related instabilities are examined in the light of the ''phenomenological model'' and the ''dynamic materials mode.'' It is found that the regime of adiabatic shear band formation is predicted by the phenomenological model, while the dynamic materials model is able to predict the inhomogeneous deformation zone. The criterion based on power partitioning is competent to predict the variations within the inhomogeneous deformation zone.
Resumo:
Back face strain (BFS) measurement is now well-established as an indirect technique to monitor crack length in compact tension (CT) fracture specimens [1,2]. Previous work [2] developed empirical relations between fatigue crack propagation (FCP) parameters. BFS, and number of cycles for CT specimens subjected to constant amplitude fatigue loading. These predictions are experimentally validated in terms of the variations of mean values of BFS and load as a function of crack length. Another issue raised by this study concerns the validity of assigning fixed values for the Paris parameters C and n to describe FCP in realistic materials.