119 resultados para software failure prediction
Resumo:
In this article, a new flame extinction model based on the k/epsilon turbulence time scale concept is proposed to predict the flame liftoff heights over a wide range of coflow temperature and O-2 mass fraction of the coflow. The flame is assumed to be quenched, when the fluid time scale is less than the chemical time scale ( Da < 1). The chemical time scale is derived as a function of temperature, oxidizer mass fraction, fuel dilution, velocity of the jet and fuel type. The present extinction model has been tested for a variety of conditions: ( a) ambient coflow conditions ( 1 atm and 300 K) for propane, methane and hydrogen jet flames, ( b) highly preheated coflow, and ( c) high temperature and low oxidizer concentration coflow. Predicted flame liftoff heights of jet diffusion and partially premixed flames are in excellent agreement with the experimental data for all the simulated conditions and fuels. It is observed that flame stabilization occurs at a point near the stoichiometric mixture fraction surface, where the local flow velocity is equal to the local flame propagation speed. The present method is used to determine the chemical time scale for the conditions existing in the mild/ flameless combustion burners investigated by the authors earlier. This model has successfully predicted the initial premixing of the fuel with combustion products before the combustion reaction initiates. It has been inferred from these numerical simulations that fuel injection is followed by intense premixing with hot combustion products in the primary zone and combustion reaction follows further downstream. Reaction rate contours suggest that reaction takes place over a large volume and the magnitude of the combustion reaction is lower compared to the conventional combustion mode. The appearance of attached flames in the mild combustion burners at low thermal inputs is also predicted, which is due to lower average jet velocity and larger residence times in the near injection zone.
Resumo:
A fatigue crack propagation model for concrete is proposed based on the concepts of fracture mechanics. This model takes into account the loading history, frequency of applied load, and size, effect parameters. Using this model, a method is described based on linear elastic fracture mechanics to assess the residual strength of cracked plain and reinforced concrete (RC) beams. This could be used to predict the residual strength (load carrying capacity) of cracked or damaged plain and reinforced concrete beams at a given level of damage. It has been seen that the fatigue crack propagation rate increases as. the size of plain concrete, beam increases indicating an increase in brittleness. In reinforced concrete (RC) beams, the fracture process becomes stable only when the beam is sufficiently reinforced.
Resumo:
The StreamIt programming model has been proposed to exploit parallelism in streaming applications on general purpose multi-core architectures. This model allows programmers to specify the structure of a program as a set of filters that act upon data, and a set of communication channels between them. The StreamIt graphs describe task, data and pipeline parallelism which can be exploited on modern Graphics Processing Units (GPUs), as they support abundant parallelism in hardware. In this paper, we describe the challenges in mapping StreamIt to GPUs and propose an efficient technique to software pipeline the execution of stream programs on GPUs. We formulate this problem - both scheduling and assignment of filters to processors - as an efficient Integer Linear Program (ILP), which is then solved using ILP solvers. We also describe a novel buffer layout technique for GPUs which facilitates exploiting the high memory bandwidth available in GPUs. The proposed scheduling utilizes both the scalar units in GPU, to exploit data parallelism, and multiprocessors, to exploit task and pipelin parallelism. Further it takes into consideration the synchronization and bandwidth limitations of GPUs, and yields speedups between 1.87X and 36.83X over a single threaded CPU.
Resumo:
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Bandwidth allocation for multimedia applications in case of network congestion and failure poses technical challenges due to bursty and delay sensitive nature of the applications. The growth of multimedia services on Internet and the development of agent technology have made us to investigate new techniques for resolving the bandwidth issues in multimedia communications. Agent technology is emerging as a flexible promising solution for network resource management and QoS (Quality of Service) control in a distributed environment. In this paper, we propose an adaptive bandwidth allocation scheme for multimedia applications by deploying the static and mobile agents. It is a run-time allocation scheme that functions at the network nodes. This technique adaptively finds an alternate patchup route for every congested/failed link and reallocates the bandwidth for the affected multimedia applications. The designed method has been tested (analytical and simulation)with various network sizes and conditions. The results are presented to assess the performance and effectiveness of the approach. This work also demonstrates some of the benefits of the agent based schemes in providing flexibility, adaptability, software reusability, and maintainability. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Automatic identification of software faults has enormous practical significance. This requires characterizing program execution behavior and the use of appropriate data mining techniques on the chosen representation. In this paper, we use the sequence of system calls to characterize program execution. The data mining tasks addressed are learning to map system call streams to fault labels and automatic identification of fault causes. Spectrum kernels and SVM are used for the former while latent semantic analysis is used for the latter The techniques are demonstrated for the intrusion dataset containing system call traces. The results show that kernel techniques are as accurate as the best available results but are faster by orders of magnitude. We also show that latent semantic indexing is capable of revealing fault-specific features.
Resumo:
Asian elephants (Dephas maximus), prominent ``flagship species'', arelisted under the category of endangered species (EN - A2c, ver. 3.1, IUCN Red List 2009) and there is a need for their conservation This requires understanding demographic and reproductive dynamics of the species. Monitoring reproductive status of any species is traditionally being carried out through invasive blood sampling and this is restrictive for large animals such as wild or semi-captive elephants due to legal. ethical, and practical reasons Hence. there is a need for a non-invasive technique to assess reproductive cyclicity profiles of elephants. which will help in the species' conservation strategies In this study. we developed an indirect competitive enzyme linked immuno-sorbent assay (ELISA) to estimate the concentration of one of the progesterone-metabolites i.e, allopregnanolone (5 alpha-P-3OH) in fecal samples of As elephants We validated the assay which had a sensitivity of 0.25 mu M at 90% binding with an EC50 value of 1 37 mu M Using female elephants. kept under semi-captive conditions in the forest camps of Mudumalar Wildlife Sanctuary, Tamil Nadu and Bandipur National Park, Karnataka, India. we measured fecal progesterone-metabolite (5 alpha-P-3OH) concentrations in six an and showed their clear correlation with those of scrum progesterone measured by a standard radio-immuno assay. Statistical analyses using a Linear Mixed Effect model showed a positive correlation (P < 0 1) between the profiles of fecal 5 alpha-P-3OH (range 0 5-10 mu g/g) and serum progesterone (range: 0 1-1 8 ng/mL) Therefore, our studies show, for the first time, that the fecal progesterone-metabolite assay could be exploited to predict estrus cyclicity and to potentially assess the reproductive status of captive and free-ranging female Asian elephants, thereby helping to plan their breeding strategy (C) 2010 Elsevier Inc.All rights reserved.
Resumo:
Bandwidth allocation for multimedia applications in case of network congestion and failure poses technical challenges due to bursty and delay sensitive nature of the applications. The growth of multimedia services on Internet and the development of agent technology have made us to investigate new techniques for resolving the bandwidth issues in multimedia communications. Agent technology is emerging as a flexible promising solution for network resource management and QoS (Quality of Service) control in a distributed environment. In this paper, we propose an adaptive bandwidth allocation scheme for multimedia applications by deploying the static and mobile agents. It is a run-time allocation scheme that functions at the network nodes. This technique adaptively finds an alternate patchup route for every congested/failed link and reallocates the bandwidth for the affected multimedia applications. The designed method has been tested (analytical and simulation)with various network sizes and conditions. The results are presented to assess the performance and effectiveness of the approach. This work also demonstrates some of the benefits of the agent based schemes in providing flexibility, adaptability, software reusability, and maintainability. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We present a new computationally efficient method for large-scale polypeptide folding using coarse-grained elastic networks and gradient-based continuous optimization techniques. The folding is governed by minimization of energy based on Miyazawa–Jernigan contact potentials. Using this method we are able to substantially reduce the computation time on ordinary desktop computers for simulation of polypeptide folding starting from a fully unfolded state. We compare our results with available native state structures from Protein Data Bank (PDB) for a few de-novo proteins and two natural proteins, Ubiquitin and Lysozyme. Based on our simulations we are able to draw the energy landscape for a small de-novo protein, Chignolin. We also use two well known protein structure prediction software, MODELLER and GROMACS to compare our results. In the end, we show how a modification of normal elastic network model can lead to higher accuracy and lower time required for simulation.
Resumo:
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.
Resumo:
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.
Resumo:
The move towards IT outsourcing is the first step towards an environment where compute infrastructure is treated as a service. In utility computing this IT service has to honor Service Level Agreements (SLA) in order to meet the desired Quality of Service (QoS) guarantees. Such an environment requires reliable services in order to maximize the utilization of the resources and to decrease the Total Cost of Ownership (TCO). Such reliability cannot come at the cost of resource duplication, since it increases the TCO of the data center and hence the cost per compute unit. We, in this paper, look into aspects of projecting impact of hardware failures on the SLAs and techniques required to take proactive recovery steps in case of a predicted failure. By maintaining health vectors of all hardware and system resources, we predict the failure probability of resources based on observed hardware errors/failure events, at runtime. This inturn influences an availability aware middleware to take proactive action (even before the application is affected in case the system and the application have low recoverability). The proposed framework has been prototyped on a system running HP-UX. Our offline analysis of the prediction system on hardware error logs indicate no more than 10% false positives. This work to the best of our knowledge is the first of its kind to perform an end-to-end analysis of the impact of a hardware fault on application SLAs, in a live system.
Resumo:
This paper deals with the simulation-driven study of the impact of hardened steel projectiles on thin aluminium target plates using explicit finite element analysis as implemented in LS-DYNA. The evaluation of finite element modelling includes a comprehensive mesh convergence study using shell elements for representing target plates and the solid element-based representation of ogivalnosed projectiles. A user-friendly automatic contact detection algorithm is used for capturing interaction between the projectile and the target plate. It is shown that the proper choice of mesh density and strain rate-dependent material properties is crucial as these parameters significantly affect the computed residual velocity. The efficacy of correlation with experimental data is adjudged in terms of a 'correlation index' defined in the present study for which values close to unity are desirable.By simulating laboratory impact tests on thin aluminium plates carried out by earlier investigators, extremely good prediction of experimental ballistic limits has been observed with correlation indices approaching unity. Additional simulation-based parametric studies have been carried out and results consistent with test data have been obtained. The simulation procedures followed in the present study can be applied with confidence in designing thin aluminium armour plates for protection against low calibre projectiles.
Resumo:
Experimental data on average velocity and turbulence intensity generated by pitched blade downflow turbines (PTD) were presented in Part I of this paper. Part II presents the results of the simulation of flow generated by PTD The standard κ-ε model along with the boundary conditions developed in the Part 1 have been employed to predict the flow generated by PTD in cylindrical baffled vessel. This part describes the new software FIAT (Flow In Agitated Tanks) for the prediction of three dimensional flow in stirred tanks. The basis of this software has been described adequately. The influence of grid size, impeller boundary conditions and values of model parameters on the predicted flow have been analysed. The model predictions successfully reproduce the three dimensionality and the other essential characteristics of the flow. The model can be used to improve the overall understanding about the relative distribution of turbulence by PTD in the agitated tank