62 resultados para sintesi asimmetrica organocatalisi reazioni tandem conformeri diidropiranoni-spiroossindoli vinilogia chinidina-squarammide chiralità base-catalisi H-bonding-catalysis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two protein tyrosine phosphatase (PTP) domains in bi-domain PTPs share high sequence and structural similarity. However, only one of the two PIP domains is catalytically active. Here we describe biochemical studies on the two tandem PTP domains of the bi-domain PTP, PTP99A. Phosphatase activity, monitored using small molecule as well as peptide substrates, revealed that the inactive (D2) domain activates the catalytic (D1) domain. Thermodynamic measurements suggest that the inactive D2 domain stabilizes the bi-domain (D1-D2) protein. The mechanism by which the D2 domain activates and stabilizes the bi-domain protein is governed by few interactions at the inter-domain interface. In particular, mutating Lys990 at the interface attenuates inter-domain communication. This residue is located at a structurally equivalent location to the so-called allosteric site of the canonical single domain PIP, PTP1B. These observations suggest functional optimization in bi-domain PTPs whereby the inactive PTP domain modulates the catalytic activity of the bi-domain enzyme. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) plays an important role in a variety of cellular functions, including biofilm formation, alterations in the cell surface, host colonization and regulation of bacterial flagellar motility, which enable bacteria to survive changing environmental conditions. The cellular level of c-di-GMP is regulated by a balance between opposing activities of diguanylate cyclases (DGCs) and cognate phosphodiesterases (PDE-As). Here, we report the presence and importance of a protein, MSDGC-1 (an orthologue of Rv1354c in Mycobacterium tuberculosis), involved in c-di-GMP turnover in Mycobacterium smegmatis. MSDGC-1 is a multidomain protein, having GAF, GGDEF and EAL domains arranged in tandem, and exhibits both c-di-GMP synthesis and degradation activities. Most other proteins containing GGDEF and EAL domains have been demonstrated to have either DGC or PDE-A activity. Unlike other bacteria, which harbour several copies of the protein involved in c-di-GMP turnover, M. smegmatis has a single genomic copy, deletion of which severely affects long-term survival under conditions of nutrient starvation. Overexpression of MSDGC-1 alters the colony morphology and growth profile of M. smegmatis. In order to gain insights into the regulation of the c-di-GMP level, we cloned individual domains and tested their activities. We observed a loss of activity in the separated domains, indicating the importance of full-length MSDGC-1 for controlling bifunctionality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, transgenic plants expressing immunogenic proteins of foot-and-mouth disease virus (FMDV) have been used as oral or parenteral vaccines against foot-and-mouth disease (FMD). They exhibit advantages like cost effectiveness, absence of processing, thermostability, and easy oral application. FMDV VP1 protein of single serotype has been mostly used as immunogen. Here we report the development of a bivalent vaccine with tandem-linked VP1 proteins of two serotypes, A and O, present in transgenic forage crop Crotalaria juncea. The expression of the bivalent protein in the transgenic plants was confirmed by Western blot analysis. Guinea pig reacted to orally or parenterally applied vaccine by humoral as well as cell-mediated immune responses including serum antibodies and stimulated lymphocytes, respectively. The vaccine protected the animals against a challenge with the virus of serotype A as well as O. This is the first report on the development of a bivalent FMD vaccine using a forage crop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The terms phase transformation, polymorphism, disorder, isosterism, and isostructuralism are often the keywords used in the design and engineering of molecular crystals. Three benzoylcarvacryl thiourea derivatives with -NH-C(S)-NH-C(O)-] cores generate molecular crystals, which provide the basis for exploring a common link between the structures related by aforementioned terms. The apparent ``origin'' of all these structural modifications has been traced to the formation of a planar molecular dimeric chain built with homomeric R-2(2)(12) and R-2(2)(8) synthons occurring in tandem, one formed with N-H center dot center dot center dot O and the other with N-H center dot center dot center dot S hydrogen bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palladium catalyzed cross-coupling reaction of hydrazones with aryl halides in the absence of external ligand is reported. The versatility of this coupling reaction is demonstrated in showcasing the selectivity of coupling reaction in the presence of hydroxyl and amine functional groups. This method allows synthesizing a variety of heterocyclic compounds, which are difficult to access from other traditional methods and are not synthesized by employing similar coupling reactions. Application of the present methodology is validated in tandem reaction of ketones to the corresponding substituted olefins in a single pot experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A palindrome is a set of characters that reads the same forwards and backwards. Since the discovery of palindromic peptide sequences two decades ago, little effort has been made to understand its structural, functional and evolutionary significance. Therefore, in view of this, an algorithm has been developed to identify all perfect palindromes (excluding the palindromic subset and tandem repeats) in a single protein sequence. The proposed algorithm does not impose any restriction on the number of residues to be given in the input sequence. This avant-garde algorithm will aid in the identification of palindromic peptide sequences of varying lengths in a single protein sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of isochromanones and isoquinolones comprising a quaternary center with high diastereoselectivity was realized via a AuCl3 catalyzed tandem intramolecular exo-dig heterocyclization/enol isomerization/Claisen rearrangement sequence in excellent yields. The reaction is general and amenable for the synthesis of structurally diverse analogues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabrication of tissue engineering scaffolds necessitates amalgamation of a multitude of attributes including a desirable porosity to encourage vascular invasion, desired surface chemistry for controlled deposition of calcium phosphate-based mineral as well as ability to support attachment, proliferation, and differentiation of lineage specific progenitor cells. Scaffold fabrication often includes additional surface treatments to bring about desired changes in the surface chemistry. In this perspective, this review documents the important natural and synthetic scaffolds fabricated for bone tissue engineering applications in tandem with the surface treatment techniques to maneuver the biocompatibility of engineered scaffolds. This review begins with a discussion on the fundamental concepts related to biocompatibility as well as the characteristics of the biological micro-environment. The primary focus is to discuss the effects of surface micro/nano patterning on the modulation of bone cell response. Apart from reviewing a host of experimental studies reporting the functionality of osteoblast-like bone cells and stem cells on surface modified or textured bioceramic/biopolymer scaffolds, theoretical insights to predict cell behavior on a scaffold with different topographical features are also briefly analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagy is one of the major immune mechanisms engaged to clear intracellular infectious agents. However, several pathogens have evolved strategies to evade autophagy. Here, we demonstrated that Mycobacteria, Shigella, and Listeria but not Klebsiella, Staphylococcus, and Escherichia inhibit IFNG-induced autophagy in macrophages by evoking selective and robust activation of WNT and SHH pathways via MTOR. Utilization of gain- or loss-of-function analyses as well as mir155-null macrophages emphasized the role of MTOR-responsive epigenetic modifications in the induction of Mir155 and Mir31. Importantly, cellular levels of PP2A, a phosphatase, were regulated by Mir155 and Mir31 to fine-tune autophagy. Diminished expression of PP2A led to inhibition of GSK3B, thus facilitating the prolonged activation of WNT and SHH signaling pathways. Sustained WNT and SHH signaling effectuated the expression of anti-inflammatory lipoxygenases, which in tandem inhibited IFNG-induced JAK-STAT signaling and contributed to evasion of autophagy. Altogether, these results established a role for new host factors and inhibitory mechanisms employed by the pathogens to limit autophagy, which could be targeted for therapeutic interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systematic cocrystallization of hydroxybenzoic acids with hexamine using liquid-assisted grinding shows facile solid state interconversion among different stoichiometric variants. The reversible interconversion caused by varying both the acid and base components in tandem is shown to be a consequence of hydrogen-bonded synthon modularity present in all representative crystal structures. Among a total of 11 complexes, three are salts and eight are cocrystals. The insulated synthons appear as conserved tetrameric motifs in the structures, and the mechanism of interconversion is closely monitored by the synthon modularity. The interconversion is consistent with the theoretically computed stabilization energies of all the tetramers found in this series of cocrystals based on atoms in molecule calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of salicylaldehydes effected tandem nucleophilic addition onto ketene, leading to corresponding coumarins in good yields under mild conditions. This pseudocycloaddition represents a very mild variant of the historic Perkin synthesis of coumarin (which remains of key interest in both perfumery and several emerging areas).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many organisms ``Universal Stress Proteins'' CUSPS) are induced in response to a variety of environmental stresses. Here we report the structures of two USPs, YnaF and YdaA from Salmonella typhimurium determined at 1.8 angstrom and 2.4 angstrom resolutions, respectively. YnaF consists of a single USP domain and forms a tetrameric organization stabilized by interactions mediated through chloride ions. YdaA is a larger protein consisting of two tandem USP domains. Two protomers of YdaA associate to form a structure similar to the YnaF tetramer. YdaA showed ATPase activity and an ATP binding motif G-2X-G-9X-G(S/T/N) was found in its C-terminal domain. The residues corresponding to this motif were not conserved in YnaF although YnaF could bind ATP. However, unlike YdaA, YnaF did not hydrolyse ATP in vitro. Disruption of interactions mediated through chloride ions by selected mutations converted YnaF into an ATPase. Residues that might be important for ATP hydrolysis could be identified by comparing the active sites of native and mutant structures. Only the C-terminal domain of YdaA appears to be involved in ATP hydrolysis. The structurally similar N-terminal domain was found to bind a zinc ion near the segment equivalent to the phosphate binding loop of the C-terminal domain. Mass spectrometric analysis showed that YdaA might bind a ligand of approximate molecular weight 800 daltons. Structural comparisons suggest that the ligand, probably related to an intermediate in lipid A biosynthesis, might bind at a site close to the zinc ion. Therefore, the N-terminal domain of YdaA binds zinc and might play a role in lipid metabolism. Thus, USPs appear to perform several distinct functions such as ATP hydrolysis, altering membrane properties and chloride sensing. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA sequence and structure play a key role in imparting fragility to different regions of the genome. Recent studies have shown that non-B DNA structures play a key role in causing genomic instability, apart from their physiological roles at telomeres and promoters. Structures such as G-quadruplexes, cruciforms, and triplexes have been implicated in making DNA susceptible to breakage, resulting in genomic rearrangements. Hence, techniques that aid in the easy identification of such non-B DNA motifs will prove to be very useful in determining factors responsible for genomic instability. In this study, we provide evidence for the use of primer extension as a sensitive and specific tool to detect such altered DNA structures. We have used the G-quadruplex motif, recently characterized at the BCL2 major breakpoint region as a proof of principle to demonstrate the advantages of the technique. Our results show that pause sites corresponding to the non-B DNA are specific, since they are absent when the G-quadruplex motif is mutated and their positions change in tandem with that of the primers. The efficiency of primer extension pause sites varied according to the concentration of monovalant cations tested, which support G-quadruplex formation. Overall, our results demonstrate that primer extension is a strong in vitro tool to detect non-B DNA structures such as G-quadruplex on a plasmid DNA, which can be further adapted to identify non-B DNA structures, even at the genomic level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem(GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystal structure of a lectin purified from Butea monosperma seeds was determined by Molecular Replacement method. Its primary structure was determined by Tandem Mass Spectroscopy and electron density maps from X-ray diffraction data. Its quaternary structure was tetrameric, formed of two monomers, alpha and beta, beta appearing as truncated alpha. The occurrence of two tetramers in the asymmetric unit of the crystal might be a consequence of asymmetric contacts due to difference in glycosylation and variable loops structures, to form an `octamer-structure'. The crystal structure showed binding pockets for gamma Abu, having a proposed role in plant defense, at the interface of canonical dimer-partners. Hemagglutination studies, enzyme kinetics, isothermal titration calorimetry and molecular dynamics showed that the lectin is specific to N-acetyl D-galactosamine, galactose and lactose in decreasing order, and alpha-amylase inhibitor. (C) 2014 Elsevier B.V. All rights reserved.