210 resultados para signal processing program
Resumo:
The paper presents a new approach to improve the detection and tracking performance of a track-while-scan (TWS) radar. The contribution consists of three parts. In Part 1 the scope of various papers in this field is reviewed. In Part 2, a new approach for integrating the detection and tracking functions is presented. It shows how a priori information from the TWS computer can be used to improve detection. A new multitarget tracking algorithm has also been developed. It is specifically oriented towards solving the combinatorial problems in multitarget tracking. In Part 3, analytical derivations are presented for quantitatively assessing, a priori, the performance of a track-while-scan radar system (true track initiation, false track initiation, true track continuation and false track deletion characteristics). Simulation results are also shown.
Resumo:
The paper presents, in three parts, a new approach to improve the detection and tracking performance of a track-while-scan radar. Part 1 presents a review of the current status of the subject. Part 2 details the new approach. It shows how a priori information provided by the tracker can be used to improve detection. It also presents a new multitarget tracking algorithm. In the present Part, analytical derivations are presented for assessing, a priori, the performance of the TWS radar system. True track initiation, false track initiation, true track continuation and false track deletion characteristics have been studied. It indicates how the various thresholds can be chosen by the designer to optimise performance. Simulation results are also presented.
Resumo:
he paper presents, in three parts, a new approach to improve the detection and tracking performance of a track-while-scan (TWS) radar. Part 1 presents a review of current status. In this part, Part 2, it is shown how the detection can be improved by utilising information from tracker. A new multitarget tracking algorithm, capable of tracking manoeuvring targets in clutter, is then presented. The algorithm is specifically tailored so that the solution to the combinatorial problem presented in a companion paper can be applied. The implementation aspects are discussed and a multiprocessor architecture identified to realise the full potential of the algorithm. Part 3 presents analytical derivations for quantitative assessment of the performance of the TWS radar system. It also shows how the performance can be optimised.
Resumo:
The behaviour of the slotted ALOHA satellite channel with a finite buffer at each of the user terminals is studied. Approximate relationships between the queuing delay, overflow probabilities and buffer size are derived as functions of the system input parameters (i.e. the number of users, the traffic intensity, the transmission and the retransmission probabilities) for two cases found in the literature: the symmetric case (same transmission and retransmission probabilities), and the asymmetric case (transmission probability far greater than the retransmission probability). For comparison, the channel performance with an infinite buffer is also derived. Additionally, the stability condition for the system is defined in the latter case. The analysis carried out in the paper reveals that the queuing delays are quite significant, especially under high traffic conditions.
Resumo:
Contention-based multiple access is a crucial component of many wireless systems. Multiple-packet reception (MPR) schemes that use interference cancellation techniques to receive and decode multiple packets that arrive simultaneously are known to be very efficient. However, the MPR schemes proposed in the literature require complex receivers capable of performing advanced signal processing over significant amounts of soft undecodable information received over multiple contention steps. In this paper, we show that local channel knowledge and elementary received signal strength measurements, which are available to many receivers today, can actively facilitate multipacket reception and even simplify the interference canceling receiver¿s design. We introduce two variants of a simple algorithm called Dual Power Multiple Access (DPMA) that use local channel knowledge to limit the receive power levels to two values that facilitate successive interference cancellation. The resulting receiver structure is markedly simpler, as it needs to process only the immediate received signal without having to store and process signals received previously. Remarkably, using a set of three feedback messages, the first variant, DPMA-Lite, achieves a stable throughput of 0.6865 packets per slot. Using four possible feedback messages, the second variant, Turbo-DPMA, achieves a stable throughput of 0.793 packets per slot, which is better than all contention algorithms known to date.
Resumo:
This paper investigates the problem of designing reverse channel training sequences for a TDD-MIMO spatial-multiplexing system. Assuming perfect channel state information at the receiver and spatial multiplexing at the transmitter with equal power allocation to them dominant modes of the estimated channel, the pilot is designed to ensure an stimate of the channel which improves the forward link capacity. Using perturbation techniques, a lower bound on the forward link capacity is derived with respect to which the training sequence is optimized. Thus, the reverse channel training sequence makes use of the channel knowledge at the receiver. The performance of orthogonal training sequence with MMSE estimation at the transmitter and the proposed training sequence are compared. Simulation results show a significant improvement in performance.
Resumo:
Using analysis-by-synthesis (AbS) approach, we develop a soft decision based switched vector quantization (VQ) method for high quality and low complexity coding of wideband speech line spectral frequency (LSF) parameters. For each switching region, a low complexity transform domain split VQ (TrSVQ) is designed. The overall rate-distortion (R/D) performance optimality of new switched quantizer is addressed in the Gaussian mixture model (GMM) based parametric framework. In the AbS approach, the reduction of quantization complexity is achieved through the use of nearest neighbor (NN) TrSVQs and splitting the transform domain vector into higher number of subvectors. Compared to the current LSF quantization methods, the new method is shown to provide competitive or better trade-off between R/D performance and complexity.
Resumo:
Compressive sensing (CS) has been proposed for signals with sparsity in a linear transform domain. We explore a signal dependent unknown linear transform, namely the impulse response matrix operating on a sparse excitation, as in the linear model of speech production, for recovering compressive sensed speech. Since the linear transform is signal dependent and unknown, unlike the standard CS formulation, a codebook of transfer functions is proposed in a matching pursuit (MP) framework for CS recovery. It is found that MP is efficient and effective to recover CS encoded speech as well as jointly estimate the linear model. Moderate number of CS measurements and low order sparsity estimate will result in MP converge to the same linear transform as direct VQ of the LP vector derived from the original signal. There is also high positive correlation between signal domain approximation and CS measurement domain approximation for a large variety of speech spectra.
Resumo:
The behaviour of the slotted ALOHA satellite channel with a finite buffer at each of the user terminals is studied. Approximate relationships between the queuing delay, overflow probabilities and buffer size are derived as functions of the system input parameters (i.e. the number of users, the traffic intensity, the transmission and the retransmission probabilities) for two cases found in the literature: the symmetric case (same transmission and retransmission probabilities), and the asymmetric case (transmission probability far greater than the retransmission probability). For comparison, the channel performance with an infinite buffer is also derived. Additionally, the stability condition for the system is defined in the latter case. The analysis carried out in the paper reveals that the queuing delays are quite significant, especially under high traffic conditions.
Resumo:
The estimation of the frequency of a sinusoidal signal is a well researched problem. In this work we propose an initialization scheme to the popular dichotomous search of the periodogram peak algorithm(DSPA) that is used to estimate the frequency of a sinusoid in white gaussian noise. Our initialization is computationally low cost and gives the same performance as the DSPA, while reducing the number of iterations needed for the fine search stage. We show that our algorithm remains stable as we reduce the number of iterations in the fine search stage. We also compare the performance of our modification to a previous modification of the DSPA and show that we enhance the performance of the algorithm with our initialization technique.
Resumo:
The subspace intersection method (SIM) provides unbiased bearing estimates of multiple acoustic sources in a range-independent shallow ocean using a one-dimensional search without prior knowledge of source ranges and depths. The original formulation of this method is based on deployment of a horizontal linear array of hydrophones which measure acoustic pressure. In this paper, we extend SIM to an array of acoustic vector sensors which measure pressure as well as all components of particle velocity. Use of vector sensors reduces the minimum number of sensors required by a factor of 4, and also eliminates the constraint that the intersensor spacing should not exceed half wavelength. The additional information provided by the vector sensors leads to performance enhancement in the form of lower estimation error and higher resolution.
Resumo:
We present robust joint nonlinear transceiver designs for multiuser multiple-input multiple-output (MIMO) downlink in the presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. The BS employs Tomlinson-Harashima precoding (THP) for interuser interference precancellation at the transmitter. We consider robust transceiver designs that jointly optimize the transmit THP filters and receive filter for two models of CSIT errors. The first model is a stochastic error (SE) model, where the CSIT error is Gaussian-distributed. This model is applicable when the CSIT error is dominated by channel estimation error. In this case, the proposed robust transceiver design seeks to minimize a stochastic function of the sum mean square error (SMSE) under a constraint on the total BS transmit power. We propose an iterative algorithm to solve this problem. The other model we consider is a norm-bounded error (NBE) model, where the CSIT error can be specified by an uncertainty set. This model is applicable when the CSIT error is dominated by quantization errors. In this case, we consider a worst-case design. For this model, we consider robust (i) minimum SMSE, (ii) MSE-constrained, and (iii) MSE-balancing transceiver designs. We propose iterative algorithms to solve these problems, wherein each iteration involves a pair of semidefinite programs (SDPs). Further, we consider an extension of the proposed algorithm to the case with per-antenna power constraints. We evaluate the robustness of the proposed algorithms to imperfections in CSIT through simulation, and show that the proposed robust designs outperform nonrobust designs as well as robust linear transceiver designs reported in the recent literature.
Resumo:
This paper deals with low maximum-likelihood (ML)-decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2 x 2) and the 4 transmit antenna, 2 receive antenna (4 x 2) MIMO systems. Presently, the best known STBC for the 2 2 system is the Golden code and that for the 4 x 2 system is the DjABBA code. Following the approach by Biglieri, Hong, and Viterbo, a new STBC is presented in this paper for the 2 x 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be information-lossless and diversity-multiplexing gain (DMG) tradeoff optimal. This design procedure is then extended to the 4 x 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of for square QAM of size. In this paper, a scheme that reduces its ML-decoding complexity to M-2 root M is presented.
Resumo:
In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.
Resumo:
We address the issue of noise robustness of reconstruction techniques for frequency-domain optical-coherence tomography (FDOCT). We consider three reconstruction techniques: Fourier, iterative phase recovery, and cepstral techniques. We characterize the reconstructions in terms of their statistical bias and variance and obtain approximate analytical expressions under the assumption of small noise. We also perform Monte Carlo analyses and show that the experimental results are in agreement with the theoretical predictions. It turns out that the iterative and cepstral techniques yield reconstructions with a smaller bias than the Fourier method. The three techniques, however, have identical variance profiles, and their consistency increases linearly as a function of the signal-to-noise ratio.