64 resultados para self-assembled semiconductor quantum dot
Resumo:
Polyelectrolytes are charged polymer species which electrostatically adsorb onto surfaces in a layer by layer fashion leading to the sequential assembly of multilayer structures. It is known that the morphology of weak polyelectrolyte structures is strongly influenced by environmental variables such as pH. We created a weak polyelectrolyte multilayer structure (similar to 100 nm thick) of cationic polymer poly-allylamine hydrochloride (PAH) and an anionic polymer poly-acrylic acid (PAA) on an etched clad fiber Bragg grating (EFBG) to study the pH induced conformational transitions in the polymer multilayers brought about by the variation in charge density of weak polyelectrolyte groups as a function of pH. The conformational changes of the polyelectrolyte multilayer structure lead to changes in optical density of the adsorbed film which reflects in the shift of the Bragg wavelength from the EFBG. Using the EFBG system we were able to probe reversible and irreversible pH induced transitions in the PAH/PAA weak polyelectrolyte system. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of similar to 3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer.
Resumo:
A chemically-induced nanorod to quantum dot transition is reported in ZnO. This transition is achieved using co-surfactants in a marginally polar solvent in chimie douce (soft chemical) conditions. This is different from the physical instability driven transitions reported so far in metal nanowires and polymers. We propose a suitable mechanism for the observed phenomenon.
Resumo:
Efficient sensing of trace amount nitroaromatic (NAC) explosives has become a major research focus in recent time due to concerns over national security as well as their role as environment pollutants. NO2-containing electron-deficient aromatic compounds, such as picric acid (PA), trinitrotoluene (TNT), and dinitrotoluene (DNT), are the common constituents of many commercially available chemical explosives. In this article, we have summarized our recent developments on the rational design of electron-rich self-assembled discrete molecular sensors and their efficacy in sensing nitroaromatics both in solution as well as in vapor phase. Several p-electron-rich fluorescent metallacycles (squares, rectangles, and tweezers/pincers) and metallacages (trigonal and tetragonal prisms) have been synthesized by means of metal-ligand coordination-bonding interactions, with enough internal space to accommodate electron-deficient nitroaromatics at the molecular level by multiple supramolecular interactions. Such interactions subsequently result in the detectable fluorescence quenching of sensors even in the presence of trace quantities of nitroaromatics. The fascinating sensing characteristics of molecular architectures discussed in this article may enable future development of improved sensors for nitroaromatic explosives.
Resumo:
We report on the tunable photoluminescence characteristics of porous ZnO microsheets fabricated within 1-5 min of microwave irradiation in the presence of a capping agent such as citric acid, and mixture of citric acid with polyvinylpyrrolidone (PVP). The UV emission intensity reduces to 60% and visible emission increases tenfold when the molar concentration of citric acid is doubled. Further diminution of the intensity of UV emission (25%) is observed when PVP is mixed with citric acid. The addition of nitrogen donor ligands to the parent precursor leads to a red shift in the visible luminescence. The deep level emission covers the entire visible spectrum and gives an impression of white light emission from these ZnO samples. The detailed luminescence mechanism of our ZnO samples is described with the help of a band diagram constructed by using the theoretical models that describe the formation energy of the defect energy levels within the energy band structure. Oxygen vacancies play the key role in the variation of the green luminescence in the ZnO microsheets. Our research findings provide an insight that it is possible to retain the microstructure and simultaneously introduce defects into ZnO. The growth of the ZnO microsheets may be due to the self assembly of the fine sheets formed during the initial stage of nucleation.
Resumo:
Despite significant improvements in their properties as emitters, colloidal quantum dots have not had much success in emerging as suitable materials for laser applications. Gain in most colloidal systems is short lived, and needs to compete with biexcitonic decay. This has necessitated the use of short pulsed lasers to pump quantum dots to thresholds needed for amplified spontaneous emission or lasing. Continuous wave pumping of gain that is possible in some inorganic phosphors has therefore remained a very distant possibility for quantum dots. Here, we demonstrate that trilayer heterostructures could provide optimal conditions for demonstration of continuous wave lasing in colloidal materials. The design considerations for these materials are discussed in terms of a kinetic model. The electronic structure of the proposed dot architectures is modeled within effective mass theory.
Resumo:
We present experimental and theoretical results on monolayer colloidal cadmium selenide quantum dot films embedded with tiny gold nanoparticles. By varying the density of the embedded gold nanoparticles, we were able to engineer a plasmon-mediated crossover from emission quenching to enhancement regime at interparticle distances for which only quenching of emission is expected. This crossover and a nonmonotonic variation of photoluminescence intensity and decay rate, in experiments, is explained in terms of a model for plasmon-mediated collective emission of quantum emitters which points to the emergence of a new regime in plasmon-exciton interactions. The presented methodology to achieve enhancement in optical quantum efficiency for optimal doping of gold nanoparticles in such ultrathin high-density quantum dot films can be beneficial for new-generation displays and photodetectors.
Resumo:
We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.
Resumo:
The surface of mild steel was modified by generating cetyl-trimethyl ammonium bromide (CTAB) self-assembled monolayer (SAM) to enhance the corrosion resistance property. The experimental parameters (pH and time) for SAM generation were optimized. The modified surface was characterized by infrared reflection absorption spectroscopy (IRRAS) and contact angle measurements. The SAM generated in 1 mM solution of CTAB at pH 2.5 for 2 h showed a regimented monolayer. Polarization and electrochemical impedance spectroscopic (EIS) studies demonstrated a significant enhancement in the corrosion resistance property of the SAM protected steel in both 1 M HCl and 3.5% NaCl solution. The CTAB SAM surface substantially reduced the corrosion rate by approximately 4 times in 1 M HCl and 1.5 times in 3.5% NaCl media as compared to bare steel. Scanning electron microscopy images confirmed the formation of lesser amounts of corrosion products on the SAM protected surface. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Quantum cellular automata (QCA) is a new technology in the nanometer scale and has been considered as one of the alternative to CMOS technology. In this paper, we describe the design and layout of a serial memory and parallel memory, showing the layout of individual memory cells. Assuming that we can fabricate cells which are separated by 10nm, memory capacities of over 1.6 Gbit/cm2 can be achieved. Simulations on the proposed memories were carried out using QCADesigner, a layout and simulation tool for QCA. During the design, we have tried to reduce the number of cells as well as to reduce the area which is found to be 86.16sq mm and 0.12 nm2 area with the QCA based memory cell. We have also achieved an increase in efficiency by 40%.These circuits are the building block of nano processors and provide us to understand the nano devices of the future.
Resumo:
This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon-chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon-chalcogen atombond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the pi-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.
Resumo:
Reaction of a ditopic urea ``strut'' (L-1) with cis-(tmen)Pd(NO3)(2) yielded a 3+3] self-assembled molecular triangle (T)L-1 = 1,4-di(4-pyridylureido)benzene; tmen = N,N,N',N'-tetrame-thylethane-1,2-diamine]. Replacing cis-(tmen)Pd(NO3)(2) in the above reaction with an equimolar mixture of Pd(NO3)(2) and a clip-type donor (L-2) yielded a template-free multicomponent 3D trigonal prism (P) decorated with multiple urea moieties L-2 = 3,3'-(1H-1,2,4-triazole-3,5-diyl)dipyridine]. This prism (P) was characterized by NMR. spectroscopy, and the structure was confirmed by X-ray crystallography. The P was employed as an effective hydrogen-bond-donor catalyst for Michael reactions of a series of water-insoluble nitro-olefins in an aqueous medium. The P showed better catalytic activity compared to the urea based ligand L-1 and the triangle T. Moreover, the confined nanospace of P in addition to large product outlet windows makes this 3D architecture a perfect molecular vessel to catalyze Diels-Alder reactions of 9-hydroxymethylanthracene with N-substituted maleimide in the aqueous medium. The present results demonstrate new observations on catalytic aqueous Diels-Alder and Michael reactions in heterogeneous fashion employing a discrete 3D architecture of Pd(II). The prism was recycled by simple filtration and reused several tithes without significant loss of activity.
Resumo:
Restricted area heterojunctions, an array of lead sulfide colloidal quantum dots (PbS-CQDs) and crystalline silicon, are studied with a non-destructive remote contact light beam induced current (RC-LBIC) technique. As well as getting good quality active area images we observed an anomalous unipolar signal response for the PbS-CQD/n-Si devices and a conventionally expected bipolar signal profile for the PbS-CQD/p-Si devices. Interestingly, our simulation results consistently yielded a unipolar and bipolar nature in the signals related to the PbSCQD/n-Si and PbS-CQD/p-Si heterostructures, respectively. In order to explain the physical mechanism involved in the unipolar signal response of the PbS-CQD/n-Si devices, we propose a model based on the band alignment in the heterojunctions, in addition to the distribution of photo-induced excess majority carriers across the junction. Given that the RC-LBIC technique is well suited to this context, the presence of these two distinct mechanisms (the bipolar and unipolar nature of the signals) needs to be considered in order to have a better interpretation of the data in the characterization of an array of homo/heterojunctions.
Resumo:
Three new ditopic imidazole ligands (2-4) were synthesized in high yields and characterized by various spectroscopic techniques. These ligands resulted in the formation of 3 + 6] self-assembled trinuclear barrels (5-7) in quantitative yields by stoichiometric combination of individual ligands and Pd(NO3)(2) in DMSO. All the three assemblies (5-7) were characterized by `H NMR and ESI-MS analysis, and subsequently, structures of the complexes 5 and 6 were confirmed by single-crystal X-ray diffraction studies. Structure analysis reveals the presence of NO3- counter anions in the intermolecular channels/pockets, which could potentially act as H-bonding sites between adsorbed water molecules within the channels. In fact, both the assemblies (5 and 6) showed water uptake (136.58, and 123.78 cm(3) g(-1), respectively) at ambient temperature under maximum allowable humidity. In addition, free aldehyde group present in the bridging ligand in complex 7 provides reactive site for postassembly modification. Herein, Knoevenagel condensation with Meldrum's acid was utilized under mild conditions by targeting aldehyde group appended in prefabricated complex 7 and transformed into a different complex (8) with altered functional group. Such postassembly functionalization enables incorporation of a new functional group without disrupting the integrity of the trifacial structure.