102 resultados para self-assembled quantum dots


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have fabricated nano-Schottky diodes of CdTe QDs with platinum metal electrodes in metal-semiconductor-metal planar configuration by drop-casting. The observed high value of ideality factor (13.3) of the diode was possibly due to the presence of defects in colloidal QDs. We observed asymmetry and non-linear nature of I-V characteristics between forward and reverse directions, which has been explained in terms of size distributions of quantum dots due to coffee ring effect. Copyright 2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. doi:10.1063/1.3669408]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-ion- (Ag, Co, Ni and Pd) doped titania nanocatalysts were successfully deposited on glass slides by layer-by-layer (LbL) self-assembly technique using a poly(styrene sulfonate sodium salt) (PSS) and poly(allylamine hydrochloride) (PAH) polyelectrolyte system. Solid diffuse reflectance (SDR) studies showed a linear increase in absorbance at 416 nm with increase in the number of m-TiO2 thin films. The LbL assembled thin films were tested for their photocatalytic activity through the degradation of Rhodamine B under visible-light illumination. From the scanning electron microscope (SEM), the thin films had a porous morphology and the atomic force microscope (AFM) studies showed ``rough'' surfaces. The porous and rough surface morphology resulted in high surface areas hence the high photocatalytic degradation (up to 97% over a 6.5 h irradiation period) using visible-light observed. Increasing the number of multilayers deposited on the glass slides resulted in increased film thickness and an increased rate of photodegradation due to increase in the availability of more nanocatalysts (more sites for photodegradation). The LbL assembled thin films had strong adhesion properties which made them highly stable thus displaying the same efficiencies after five (5) reusability cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-component self-assembly of a 90 degrees PdII acceptor and a triimidazole donor led to the formation of a water-soluble semi-cylindrical cage with a hydrophobic cavity, which was separately crystallized with hydrophilic- and hydrophobic guests. The parent cage was found to catalyze the Knoevenagel condensation reaction of a series of aromatic mono-aldehydes with active methylene compounds, such as Meldrum's acid or 1,3-dimethylbarbituric acid. The confined hydrophobic nanospace within this cage was also used in the catalytic DielsAlder reactions of 9-hydroxymethylanthracene with N-phenylmaleimide or N-cyclohexylmaleimide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin sulphide (SnS) quantum dots of size ranging from 2.4 to 14.4 nm are prepared by chemical precipitation method in aqueous media. Growth of the SnS particles is monitored by controlling the deposition time. Both XRD and SAED patterns confirm that the particles possess orthorhombic structure. The uncapped SnS particles showed secondary phases like Sn2S3 and SnS2 which is visible in the SAED pattern. From the electrochemical characterization. HOMO-LUMO levels of both TiO2 and SnS are determined and the band alignment is found to be favorable for electron transfer from SnS to TiO2. Moreover, the HOMO-LUMO levels varied for different particle sizes. Solar cell is fabricated by sensitizing porous TiO2 thin film with SnS QDs. Cell structure is characterized with and without buffer layer between FTO and TiO2. Without the buffer layer, cell showed an open circuit voltage (V-oc) of 504 mV and short circuit current density (J(sc)) of 2.3 mA/cm(2) under AM1.5 condition. The low fill factor of this structure (15%) is seen to be increased drastically to 51%, on the incorporation of the buffer layer. The cell characteristics are analyzed using two different size quantum dots. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the fabrication of nanoholes on silicon surface by exploiting the solubility of silicon in gallium by local droplet etching. Nanometer-sized gallium droplets yield nanoholes when annealed in ultra-high vacuum at moderate temperatures (similar to 500 degrees C) without affecting the other regions. High vacuum and moderate annealing temperatures are key parameters to obtain well-defined nanoholes with diameter comparable to that of Ga droplets. Self-assembly of Ga droplet leads to a nanohole density of 4-8 x 10(10)/cm(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supramolecular chemistry is an emerging tool for devising materials that can perform specified functions. The self-assembly of facially amphiphilic bile acid molecules has been extensively utilized for the development of functional soft materials. Supramolecular hydrogels derived from the bile acid backbone act as useful templates for the intercalation of multiple components. Based on this, synthesis of gel-nanoparticle hybrid materials, photoluminescent coating materials, development of a new enzyme assay technique, etc. were achieved in the author's laboratory. The present account highlights some of these achievements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

8MeV electron irradiation effects on thioglycolic acid (TGA)-capped CdTe quantum dots (QD) are discussed in this study. CdTe QDs were characterized using x-ray diffraction (XRD), transmission electron microscope (TEM) and x-ray photoelectron spectroscopy (XPS). Steady-state and time-resolved emission spectroscopy and UV-visible absorption spectroscopy were performed before and after irradiation with 8MeV electrons. XRD and TEM confirm the growth of TGA-capped CdTe QDs. The photoemission wavelength, intensity and lifetimes were found to vary with electron dose. At lower doses, they were found to be increasing (red-shift of photoluminescence (PL) peak and intensity) while the intensity decreased at higher electron doses. The observed changes in PL property, XPS and XRD analysis suggest possible epitaxial growth of the CdS shell on the CdTe core. This work demonstrates electron beam induced formation of the CdS layer on the CdTe core, which is a key step towards growth of the water soluble CdTe/CdS core-shell structure for biomedical labelling applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate electronic energy transfer between resonance states of 2 and 2.8 nm CdTe quantum dots in aqueous media using steady-state photoluminescence spectroscopy without using any external linker molecule. With increasing concentration of larger dots, there is subsequent quenching of luminescence in smaller dots accompanied by the enhancement of luminescence in larger dots. Our experimental evidence suggests that there is long-range resonance energy transfer among electronic excitations, specifically from the electronically confined states of the smaller dots to the higher excited states of the larger dots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous titanium oxide-carbon hybrid nanostructure (TiO2-C) with a specific surface area of 350 m(2)/g and an average pore-radius of 21 center dot 8 is synthesized via supramolecular self-assembly with an in situ crystallization process. Subsequently, TiO2-C supported Pt-Ru electro-catalyst (Pt-Ru/TiO2-C) is obtained and investigated as an anode catalyst for direct methanol fuel cells (DMFCs). X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM) have been employed to evaluate the crystalline nature and the structural properties of TiO2-C. TEM images reveal uniform distribution of Pt-Ru nanoparticles (d (Pt -aEuro parts per thousand Ru) = 1 center dot 5-3 center dot 5 nm) on TiO2-C. Methanol oxidation and accelerated durability studies on Pt-Ru/TiO2-C exhibit enhanced catalytic activity and durability compared to carbon-supported Pt-Ru. DMFC employing Pt-Ru/TiO2-C as an anode catalyst delivers a peak-power density of 91 mW/cm(2) at 65 A degrees C as compared to the peak-power density of 60 mW/cm(2) obtained for the DMFC with carbon-supported Pt-Ru anode catalyst operating under similar conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss experimental results on the ability to significantly tune the photoluminescence decay rates of CdSe quantum dots embedded in an ordered template, using lightly doped small gold nanoparticles (nano-antennae), of relatively low optical efficiency. We observe both enhancement and quenching of photoluminescence intensity of the quantum dots varying monotonically with increasing volume fraction of added gold nanoparticles, with respect to undoped quantum dot arrays. However, the corresponding variation in lifetime of photoluminescence spectra decay shows a hitherto unobserved, non-monotonic variation with gold nanoparticle doping. We also demonstrate that Purcell effect is quite effective for the larger (5 nm) gold nano-antenna leading to more than four times enhanced radiative rate at spectral resonance, for largest doping and about 1.75 times enhancement for off-resonance. Significantly for spectral off-resonance samples, we could simultaneously engineer reduction of non-radiative decay rate along with increase of radiative decay rate. Non-radiative decay dominates the system for the smaller (2 nm) gold nano-antenna setting the limit on how small these plasmonic nano-antennae could be to be effective in engineering significant enhancement in radiative decay rate and, hence, the overall quantum efficiency of quantum dot based hybrid photonic assemblies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HgSe and Hg0.5Cd0.5Se quantum dos (QDs) are synthesized at room temperature by a novel liquid-liquid interface method and their photodetection properties in the near-IR region are investigated. The photodetection properties of our Te-free systems are found to be comparable to those of the previously reported high performance QD vis-IR detectors including HgTe. The present synthesis indicates the cost-effectiveness of selenium based IR detectors owing to the abundance and lower toxicity of selenium compared to tellurium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self assembled monolayer (SAM) of sodium oleate was generated on mild steel by the dip coating method. Formation of the SAM on mild steel was examined using Infrared Reflection Absorption Spectroscopy (IRRAS) and contact angle measurements. The chemical and anticorrosive properties of the SAM were analyzed using different techniques. IRRAS and water contact angle data revealed the crystallinity and chemical stability of the SAM modified mild steel. The electrochemical measurements showed that the mild steel with the sodium oleate derived SAM exhibited better corrosion resistance in saline water. The effect of temperature and pH on the SAM formation and its anti corrosion ability was explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a non-hydrolytic sol-gel combustion method for synthesizing nanocomposites of PbO quantum dots on anatase TiO2 with a high surface area. XRD, electron microscopy, DRS, cathodoluminescence and BET were employed for structural, microstructural and optical characterization of the composites. The photocatalytic activity of TiO2 and PbO/TiO2 was investigated and compared with Degussa P-25. The results indicate that the photocatalytic activity of quantum dot dispersed TiO2 is higher than that of bare TiO2 and much higher than that of commercial Degussa P-25. The origin of enhanced photoreactivity of the synthesized material can be assigned to a synergetic effect of high surface area, higher number of active sites and an engineered band structure in the heterostructure. The mechanisms for photocatalytic activity are discussed based on production of photogenerated reactive species. The knowledge gained through this report open up ideal synthesis routes for designing advanced functional heterostructures with engineered band structure and has important implications in solar energy based applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multi-component nanomaterials combine the individual properties and give rise to emergent phenomenon. Optical excitations in such hybrid nonmaterial's ( for example Exciton in semiconductor quantum dots and Plasmon in Metal nanomaterials) undergo strong weak electromagnetic coupling. Such exciton-plasmon interactions allow design of absorption and emission properties, control of nanoscale energy-transfer processes, and creation of new excitations in the strong coupling regime.This Exciton plasmon interaction in hybrid nanomaterial can lead to both enhancement in the emission as well as quenching. In this work we prepared close-packed hybrid monolayer of thiol capped CdSe and gold nanoparticles. They exhibit both the Quenching and enhancements the in PL emission.The systematic variance of PL from such hybrid nanomaterials monolayer is studied by tuning the Number ratio of Gold per Quantum dots, the surface density of QDs and the spectral overlap of emission spectrum of QD and absorption spectrum of Gold nanoparticles. Role of Localized surface Plasmon which not only leads to quenching but strong enhancements as well, is explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two Pd-6 molecular aggregates (1 and 2), self-sorted via a template-free three-component self-assembly process, represent new examples of discrete architectures exhibiting very high proton conductivity 0.78 x 10(-3) S cm(-1) (1) and 0.22 X 10(-3) S cm(-1) (2)] at 300 K at low relative humidity (B46%) with low activation energy comparable to that of currently used Nafion in fuel cells.