49 resultados para secretory duct


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coupled wavenumbers in infinite fluid-filled isotropic and orthotropic cylindrical shells are considered. Using the Donnell-Mushtari (DM) theory for thin shells, compact and elegant asymptotic expansions for the wavenumbers are found at an intermediate fluid loading for both the coupled rigid-duct modes (''fluid-originated'') and the coupled structural wavenumbers (''structure-originated modes'') over the entire frequency range where DM theory is valid. The coupled rigid-duct expansions are found to be valid for O(1) orthotropy and for all circumferential orders, whereas the coupled structural wavenumber expansions are valid for small orthotropy and for low circumferential orders. These two above results are then used to derive the expansions for a set of multiple complex roots that display a locking behavior at this intermediate fluid-loading. The expansions are matched with the numerical solutions of the coupled dispersion relation and the match is found to be good over most of the frequency range. (C) 2014 Acoustical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The malaria parasite experiences a significant amount of redox stress during its growth in human erythrocytes and heavily relies on secretory functions for pathogenesis. Most certainly, the parasite is equipped with machinery to tackle perturbations in the secretory pathway, like the unfolded protein response pathway in higher eukaryotes. Our bioinformatics analysis revealed the complete absence of genes involved in the canonical unfolded protein response pathway in Plasmodium falciparum. Accordingly, the parasite was unable to up-regulate endoplasmic reticulum (ER) chaperones or ER-associated degradation in response to DTT-mediated ER stress. Global profiling of gene expression upon DTT treatment revealed a network of AP2 transcription factors and their targets being activated. The overall outcome was up-regulation of genes involved in protein export and the sexual stage of the parasite life cycle culminating in gametocytogenesis. Our results suggest that the malaria parasite uses ER stress as a cue to switch to the transmissible sexual stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein lysine acetylation is known to regulate multiple aspects of bacterial metabolism. However, its presence in mycobacterial signal transduction and virulence-associated proteins has not been studied. In this study, analysis of mycobacterial proteins from different cellular fractions indicated dynamic and widespread occurrence of lysine acetylation. Mycobacterium tuberculosis proteins regulating diverse physiological processes were then selected and expressed in the surrogate host Mycobacterium smegmatis. The purified proteins were analyzed for the presence of lysine acetylation, leading to the identification of 24 acetylated proteins. In addition, novel lysine succinylation and propionylation events were found to co-occur with acetylation on several proteins. Protein-tyrosine phosphatase B (PtpB), a secretory phosphatase that regulates phosphorylation of host proteins and plays a critical role in Mycobacterium infection, is modified by acetylation and succinylation at Lys-224. This residue is situated in a lid region that covers the enzyme's active site. Consequently, acetylation and succinylation negatively regulate the activity of PtpB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions. (C) 2015 Elsevier Ltd. All rights reserved.