160 resultados para scale invariant
Resumo:
Given a Hamiltonian system, one can represent it using a symplectic map. This symplectic map is specified by a set of homogeneous polynomials which are uniquely determined by the Hamiltonian. In this paper, we construct an invariant norm in the space of homogeneous polynomials of a given degree. This norm is a function of parameters characterizing the original Hamiltonian system. Such a norm has several potential applications. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Water-mediated transformations provide a useful handle for exploring the flexibility in protein molecules and the invariant features in their hydration shells. Low-humidity monoclinic hen egg white lysozyme, resulting from such a transformation, has perhaps the lowest solvent content observed in any protein crystal so far and has a well-ordered structure. A detailed comparison involving this structure, low-humidity tetragonal lysozyme, and the other available refined crystal structures of the enzyme permits the delineation of the relatively rigid, moderately flexible and highly flexible regions of the molecule. The relatively rigid region forms a contiguous structural unit close to the molecular centroid and encompasses parts of of the main beta-structure and three alpha-helices. The hydration shell of the protein contains 30 invariant water molecules. Many of them are involved in holding different parts of the molecule together or in stabilizing local structure. Five of the six invariant water molecules attached to the substrate-binding region form part of a water cluster contiguous with the side-chains of the catalytic residues Glu-35 and Asp-52.
Resumo:
The paper describes the sensitivity of the simulated precipitation to changes in convective relaxation time scale (TAU) of Zhang and McFarlane (ZM) cumulus parameterization, in NCAR-Community Atmosphere Model version 3 (CAM3). In the default configuration of the model, the prescribed value of TAU, a characteristic time scale with which convective available potential energy (CAPE) is removed at an exponential rate by convection, is assumed to be 1 h. However, some recent observational findings suggest that, it is larger by around one order of magnitude. In order to explore the sensitivity of the model simulation to TAU, two model frameworks have been used, namely, aqua-planet and actual-planet configurations. Numerical integrations have been carried out by using different values of TAU, and its effect on simulated precipitation has been analyzed. The aqua-planet simulations reveal that when TAU increases, rate of deep convective precipitation (DCP) decreases and this leads to an accumulation of convective instability in the atmosphere. Consequently, the moisture content in the lower-and mid-troposphere increases. On the other hand, the shallow convective precipitation (SCP) and large-scale precipitation (LSP) intensify, predominantly the SCP, and thus capping the accumulation of convective instability in the atmosphere. The total precipitation (TP) remains approximately constant, but the proportion of the three components changes significantly, which in turn alters the vertical distribution of total precipitation production. The vertical structure of moist heating changes from a vertically extended profile to a bottom heavy profile, with the increase of TAU. Altitude of the maximum vertical velocity shifts from upper troposphere to lower troposphere. Similar response was seen in the actual-planet simulations. With an increase in TAU from 1 h to 8 h, there was a significant improvement in the simulation of the seasonal mean precipitation. The fraction of deep convective precipitation was in much better agreement with satellite observations.
Resumo:
Given a classical dynamical theory with second-class constraints, it is sometimes possible to construct another theory with first-class constraints, i.e., a gauge-invariant one, which is physically equivalent to the first theory. We identify some conditions under which this may be done, explaining the general principles and working out several examples. Field theoretic applications include the chiral Schwinger model and the non-linear sigma model. An interesting connection with the work of Faddeev and Shatashvili is pointed out.
Resumo:
An implicit sub-grid scale model for large eddy simulation is presented by utilising the concept of a relaxation system for one dimensional Burgers' equation in a novel way. The Burgers' equation is solved for three different unsteady flow situations by varying the ratio of relaxation parameter (epsilon) to time step. The coarse mesh results obtained with a relaxation scheme are compared with the filtered DNS solution of the same problem on a fine mesh using a fourth-order CWENO discretisation in space and third-order TVD Runge-Kutta discretisation in time. The numerical solutions obtained through the relaxation system have the same order of accuracy in space and time and they closely match with the filtered DNS solutions.
Resumo:
Observational studies indicate that the convective activity of the monsoon systems undergo intraseasonal variations with multi-week time scales. The zone of maximum monsoon convection exhibits substantial transient behavior with successive propagating from the North Indian Ocean to the heated continent. Over South Asia the zone achieves its maximum intensity. These propagations may extend over 3000 km in latitude and perhaps twice the distance in longitude and remain as coherent entities for periods greater than 2-3 weeks. Attempts to explain this phenomena using simple ocean-atmosphere models of the monsoon system had concluded that the interactive ground hydrology so modifies the total heating of the atmosphere that a steady state solution is not possible, thus promoting lateral propagation. That is, the ground hydrology forces the total heating of the atmosphere and the vertical velocity to be slightly out of phase, causing a migration of the convection towards the region of maximum heating. Whereas the lateral scale of the variations produced by the Webster (1983) model were essentially correct, they occurred at twice the frequency of the observed events and were formed near the coastal margin, rather than over the ocean. Webster's (1983) model used to pose the theories was deficient in a number of aspects. Particularly, both the ground moisture content and the thermal inertia of the model were severely underestimated. At the same time, the sea surface temperatures produced by the model between the equator and the model's land-sea boundary were far too cool. Both the atmosphere and the ocean model were modified to include a better hydrological cycle and ocean structure. The convective events produced by the modified model possessed the observed frequency and were generated well south of the coastline. The improved simulation of monsoon variability allowed the hydrological cycle feedback to be generalized. It was found that monsoon variability was constrained to lie within the bounds of a positive gradient of a convective intensity potential (I). The function depends primarily on the surface temperature, the availability of moisture and the stability of the lower atmosphere which varies very slowly on the time scale of months. The oscillations of the monsoon perturb the mean convective intensity potential causing local enhancements of the gradient. These perturbations are caused by the hydrological feedbacks, discussed above, or by the modification of the air-sea fluxes caused by variations of the low level wind during convective events. The final result is the slow northward propagation of convection within an even slower convective regime. The ECMWF analyses show very similar behavior of the convective intensity potential. Although it is considered premature to use the model to conduct simulations of the African monsoon system, the ECMWF analysis indicates similar behavior in the convective intensity potential suggesting, at least, that the same processes control the low frequency structure of the African monsoon. The implications of the hypotheses on numerical weather prediction of monsoon phenomenon are discussed.
Resumo:
An energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly Aeshna Multicolor, are analyzed using numerical simulations. It is shown that flapping angle variations of the smart flapping wing are similar to the actual dragonfly wing for a specific feasible voltage. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the smart wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.
Resumo:
This paper presents the strong nonlocal scale effect on the flexural wave propagation in a monolayer graphene sheet. The graphene is modeled as an isotropic plate of one atom thick. Nonlocal governing equation of motion is derived and wave propagation analysis is performed using spectral analysis. The present analysis shows that the flexural wave dispersion in graphene obtained by local and nonlocal elasticity theories is quite different. The nonlocal elasticity calculation shows that the wavenumber escapes to infinite at certain frequency and the corresponding wave velocity tends to zero at that frequency indicating localization and stationary behavior. This behavior is captured in the spectrum and dispersion curves. The cut-off frequency of flexural wave not only depend on the axial wavenumber but also on the nonlocal scaling parameter. The effect of axial wavenumber on the wave behavior in graphene is also discussed in the present manuscript. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Instability and dewetting engendered by the van der Waals force in soft thin (<100 nm) linear viscoelastic solid (e. g., elastomeric gel) films on uniform and patterned surfaces are explored. Linear stability analysis shows that, although the elasticity of the film controls the onset of instability and the corresponding critical wavelength, the dominant length-scale remains invariant with the elastic modulus of the film. The unstable modes are found to be long-wave, for which a nonlinear long-wave analysis and simulations are performed to uncover the dynamics and morphology of dewetting. The stored elastic energy slows down the temporal growth of instability significantly. The simulations also show that a thermodynamically stable film with zero-frequency elasticity can be made unstable in the presence of physico-chemical defects on the substrate and can follow an entirely different pathway with far fewer holes as compared to the viscous films. Further, the elastic restoring force can retard the growth of a depression adjacent to the hole-rim and thus suppress the formation of satellite holes bordering the primary holes. These findings are in contrast to the dewetting of viscoelastic liquid films where nonzero frequency elasticity accelerates the film rupture and promotes the secondary instabilities. Thus, the zero-frequency elasticity can play a major role in imposing a better-defined long-range order to the dewetted structures by arresting the secondary instabilities. (C) 2011 American Institute of Physics. doi: 10.1063/1.3554748]
Resumo:
An exact numerical calculation of ensemble-averaged length-scale-dependent conductance for the one-dimensional Anderson model is shown to support an earlier conjecture for a conductance minimum. The numerical results can be understood in terms of the Thouless expression for the conductance and the Wigner level-spacing statistics.
Resumo:
A general analysis of squeezing transformations for two-mode systems is given based on the four-dimensional real symplectic group Sp(4, R). Within the framework of the unitary (metaplectic) representation of this group, a distinction between compact photon-number-conserving and noncompact photon-number-nonconserving squeezing transformations is made. We exploit the U(2) invariant squeezing criterion to divide the set of all squeezing transformations into a two-parameter family of distinct equivalence classes with representative elements chosen for each class. Familiar two-mode squeezing transformations in the literature are recognized in our framework and seen to form a set of measure zero. Examples of squeezed coherent and thermal states are worked out. The need to extend the heterodyne detection scheme to encompass all of U(2) is emphasized, and known experimental situations where all U(2) elements can be reproduced are briefly described.
Resumo:
We assume the large-scale diffuse magnetic field of the Sun to originate from the poloidal component of a dynamo operating at the base of the convection zone, whereas the sunspots are due to the toroidal component. The evolution of the poloidal component is studied to model the poleward migration of the diffuse field seen on the solar surface and the polar reversal at the time of sunspot maxima (Dikpati and Choudhuri 1994, 1995).
Resumo:
Although the sunspots migrate towards the equator, the large-scale weak diffuse magnetic fields of the Sun migrate poleward with the solar cycle, the polar field reversing at the time of the sunspot maxima. We apply the vector model of Dikpati and Choudhuri (1994, Paper I) to fit these observations. The dynamo layer at the base of the convection zone is taken to be the source of the diffuse field, which is then evolved in the convection zone subject to meridional circulation and turbulent diffusion. We find that the longitudinally averaged observational data can be fitted reasonably well both for positive and negative values of the alpha-effect by adjusting the subsurface meridional flow suitably. The model will be extended in a future paper to include the decay of active regions as an extra source of the diffuse field, which may be necessary to explain the probable phase lag between B-tau and B-phi at lower latitudes.
Resumo:
The actor-critic algorithm of Barto and others for simulation-based optimization of Markov decision processes is cast as a two time Scale stochastic approximation. Convergence analysis, approximation issues and an example are studied.