78 resultados para redundant manipulator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A careful study of the existing literature available in the field of cavitation reveals the potential of ultrasonics as a tool for controlling and, if possible, eliminating certain types of hydrodynamic cavitation through the manipulation of nuclei size present in a flow. A glass venturi is taken to be an ideal device to study the cavitation phenomenon at its throat and its potential control. A piezoelectric transducer, driven at the crystal resonant frequency, is used to generate an acoustic pressure field and is termed an �ultrasonic nuclei manipulator (UNM)�. Electrolysis bubbles serve as artificial nuclei to produce travelling bubble cavitation at the venturi throat in the absence of a UNM but this cavitation is completely eliminated when a UNM is operative. This is made possible because the nuclei, which pass through the acoustic field first, cavitate, collapse violently and perhaps fragment and go into dissolution before reaching the venturi throat. Thus, the potential nuclei for travelling bubble cavitation at the venturi throat seem to be systematically destroyed through acoustic cavitation near the UNM. From the solution to the bubble dynamics equation, it has been shown that the potential energy of a bubble at its maximum radius due to an acoustic field is negligible compared to that for the hydrodynamic field. Hence, even though the control of hydrodynamic macro cavitation achieved in this way is at the expense of acoustic micro cavitation, it can still be considered to be a significant gain. These are some of the first results in this direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NMR spectra of molecules oriented in liquid-crystalline matrix provide information on the structure and orientation of the molecules. Thermotropic liquid crystals used as an orienting media result in the spectra of spins that are generally strongly coupled. The number of allowed transitions increases rapidly with the increase in the number of interacting spins. Furthermore, the number of single quantum transitions required for analysis is highly redundant. In the present study, we have demonstrated that it is possible to separate the subspectra of a homonuclear dipolar coupled spin system on the basis of the spin states of the coupled heteronuclei by multiple quantum (MQ)−single quantum (SQ) correlation experiments. This significantly reduces the number of redundant transitions, thereby simplifying the analysis of the complex spectrum. The methodology has been demonstrated on the doubly 13C labeled acetonitrile aligned in the liquid-crystal matrix and has been applied to analyze the complex spectrum of an oriented six spin system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural alignments are the most widely used tools for comparing proteins with low sequence similarity. The main contribution of this paper is to derive various kernels on proteins from structural alignments, which do not use sequence information. Central to the kernels is a novel alignment algorithm which matches substructures of fixed size using spectral graph matching techniques. We derive positive semi-definite kernels which capture the notion of similarity between substructures. Using these as base more sophisticated kernels on protein structures are proposed. To empirically evaluate the kernels we used a 40% sequence non-redundant structures from 15 different SCOP superfamilies. The kernels when used with SVMs show competitive performance with CE, a state of the art structure comparison program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions.We use the force and moment transformation matrices separately,and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation has been applied to a class of Stewart platform manipulators. We obtain multi-parameter families of isotropic manipulator analytically. In addition to computing the isotropic configurations of an existing manipulator,we demonstrate a procedure for designing the manipulator for isotropy at a given configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general screw systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. The formulation is illustrated with examples of practical manipulators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the advent of Internet, video over IP is gaining popularity. In such an environment, scalability and fault tolerance will be the key issues. Existing video on demand (VoD) service systems are usually neither scalable nor tolerant to server faults and hence fail to comply to multi-user, failure-prone networks such as the Internet. Current research areas concerning VoD often focus on increasing the throughput and reliability of single server, but rarely addresses the smooth provision of service during server as well as network failures. Reliable Server Pooling (RSerPool), being capable of providing high availability by using multiple redundant servers as single source point, can be a solution to overcome the above failures. During a possible server failure, the continuity of service is retained by another server. In order to achieve transparent failover, efficient state sharing is an important requirement. In this paper, we present an elegant, simple, efficient and scalable approach which has been developed to facilitate the transfer of state by the client itself, using extended cookie mechanism, which ensures that there is no noticeable change in disruption or the video quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-axis micromanipulators, whose tip orientation and position can be controlled in real time in the scanning plane, enable versatile probing systems for 2.5-D nanometrology. The key to achieve high-precision probing systems is to accurately control the interaction point of the manipulator tip when its orientation is changed. This paper presents the development of a probing system wherein the deviation in the end point due to large orientation changes is controlled to within 10 nm. To achieve this, a novel micromanipulator design is first proposed, wherein the end point of the tip is located on the axis of rotation. Next, the residual tip motion caused by fabrication error and actuation crosstalk is modeled and a systematic method to compensate it is presented. The manipulator is fabricated and the performance of the developed scheme to control tip position during orientation change is experimentally validated. Subsequently, the two-axis probing system is demonstrated to scan the full top surface of a micropipette down to a diameter of 300 nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GH3 proteins control auxin homeostasis by inactivating excess auxin as conjugates of amino acids and sugars and thereby controlling cellular bioactive auxin. Since auxin regulates many aspects of plant growth and development, regulated expression of these genes offers a mechanism to control various developmental processes. OsMGH3/OsGH3-8 is expressed abundantly in rice florets and is regulated by two related and redundant transcription factors, OsMADS1 and OsMADS6, but its contribution to flower development is not known. We functionally characterize OsMGH3 by overexpression and knock-down analysis and show a partial overlap in these phenotypes with that of mutants in OsMADS1 and OsMADS6. The overexpression of OsMGH3 during the vegetative phase affects the overall plant architecture, whereas its inflorescence-specific overexpression creates short panicles with reduced branching, resembling in part the effects of OsMADS1 overexpression. In contrast, the down-regulation of endogenous OsMGH3 caused phenotypes consistent with auxin overproduction or activated signaling, such as ectopic rooting from aerial nodes. Florets in OsMGH3 knock-down plants were affected in carpel development and pollen viability, both of which reduced fertility. Some of these floret phenotypes are similar to osmads6 mutants. Taken together, we provide evidence for the functional significance of auxin homeostasis and its transcriptional regulation during rice panicle branching and floret organ development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instruction reuse is a microarchitectural technique that improves the execution time of a program by removing redundant computations at run-time. Although this is the job of an optimizing compiler, they do not succeed many a time due to limited knowledge of run-time data. In this paper we examine instruction reuse of integer ALU and load instructions in network processing applications. Specifically, this paper attempts to answer the following questions: (1) How much of instruction reuse is inherent in network processing applications?, (2) Can reuse be improved by reducing interference in the reuse buffer?, (3) What characteristics of network applications can be exploited to improve reuse?, and (4) What is the effect of reuse on resource contention and memory accesses? We propose an aggregation scheme that combines the high-level concept of network traffic i.e. "flows" with a low level microarchitectural feature of programs i.e. repetition of instructions and data along with an architecture that exploits temporal locality in incoming packet data to improve reuse. We find that for the benchmarks considered, 1% to 50% of instructions are reused while the speedup achieved varies between 1% and 24%. As a side effect, instruction reuse reduces memory traffic and can therefore be considered as a scheme for low power.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies planar whole arm manipulation of a circular object using closed loop and hybrid manipulators. The manipulation is simple with fewer degrees of actuation than the task space. This is an useful operation if the initial and final positions of the object are on the same surface. Closed loop manipulator is a 4/5 bar mechanism. In hybrid manipulators a open loop manipulator with 3/4 links is attached to the floating link of 4/5 bar mechanism. The mobility analysis is carried out to find the connectivity of the object with reference to frame. The manipulation (forward kinematics) starts from a given configuration of the object and the manipulator. In hybrid manipulators determination of initial configuration involves inverse kinematics of open loop manipulator. The input joint velocities are used to demonstrate the manipulation. Conditions are specified for prehensile manipulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a new three-phase, five-level inverter topology with a single-dc source is presented. The proposed topology is obtained by cascading a three-level flying capacitor inverter with a flying H-bridge power cell in each phase. This topology has redundant switching states for generating different pole voltages. By selecting appropriate switching states, the capacitor voltages can be balanced instantaneously (as compared to the fundamental) in any direction of the current, irrespective of the load power factor. Another important feature of this topology is that if any H-bridge fails, it can be bypassed and the configuration can still operate as a three-level inverter at its full power rating. This feature improves the reliability of the circuit. A 3-kW induction motor is run with the proposed topology for the full modulation range. The effectiveness of the capacitor balancing algorithm is tested for the full range of speed and during the sudden acceleration of the motor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queens of many social insect species are known to maintain reproductive monopoly by pheromonal signalling of fecundity. Queens of the primitively eusocial wasp Ropalidia marginata appear to do so using secretions from their Dufour's glands, whose hydrocarbon composition is correlated with fertility. Solitary nest foundresses of R. marginata are without nestmates; hence expressing a queen signal can be redundant, since there is no one to receive the signal. But if queen pheromone is an honest signal inextricably linked with fertility, it should correlate with fertility and be expressed irrespective of the presence or absence of receivers of the signal, by virtue of being a byproduct of the state of fertility. Hence we compared the Dufour's gland hydrocarbons and ovaries of solitary foundresses with queens and workers of post-emergence nests. Our results suggest that queen pheromone composition in R. marginata is a byproduct of fertility and hence can honestly signal fertility. This provides important new evidence for the honest signalling hypothesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most homodimeric proteins have symmetric structure. Although symmetry is known to confer structural and functional advantage, asymmetric organization is also observed. Using a non-redundant dataset of 223 high-resolution crystal structures of biologically relevant homodimers, we address questions on the prevalence and significance of asymmetry. We used two measures to quantify global and interface asymmetry, and assess the correlation of several molecular and structural parameters with asymmetry. We have identified rare cases (11/223) of biologically relevant homodimers with pronounced global asymmetry. Asymmetry serves as a means to bring about 2:1 binding between the homodimer and another molecule; it also enables cellular signalling arising from asymmetric macromolecular ligands such as DNA. Analysis of these cases reveals two possible mechanisms by which possible infinite array formation is prevented. In case of homodimers associating via non-topologically equivalent surfaces in their tertiary structures, ligand-dependent mechanisms are used. For stable dimers binding via large surfaces, ligand-dependent structural change regulates polymerisation/depolymerisation; for unstable dimers binding via smaller surfaces that are not evolutionarily well conserved, dimerisation occurs only in the presence of the ligand. In case of homodimers associating via interaction surfaces with parts of the surfaces topologically equivalent in the tertiary structures, steric hindrance serves as the preventive mechanism of infinite array. We also find that homodimers exhibiting grossly symmetric organization rarely exhibit either perfect local symmetry or high local asymmetry. Binding of small ligands at the interface does not cause any significant variation in interface asymmetry. However, identification of biologically relevant interface asymmetry in grossly symmetric homodimers is confounded by the presence of similar small magnitude changes caused due to artefacts of crystallisation. Our study provides new insights regarding accommodation of asymmetry in homodimers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Software transactional memory (STM) is a promising programming paradigm for shared memory multithreaded programs. In order for STMs to be adopted widely for performance critical software, understanding and improving the cache performance of applications running on STM becomes increasingly crucial, as the performance gap between processor and memory continues to grow. In this paper, we present the most detailed experimental evaluation to date, of the cache behavior of STM applications and quantify the impact of the different STM factors on the cache misses experienced by the applications. We find that STMs are not cache friendly, with the data cache stall cycles contributing to more than 50% of the execution cycles in a majority of the benchmarks. We find that on an average, misses occurring inside the STM account for 62% of total data cache miss latency cycles experienced by the applications and the cache performance is impacted adversely due to certain inherent characteristics of the STM itself. The above observations motivate us to propose a set of specific compiler transformations targeted at making the STMs cache friendly. We find that STM's fine grained and application unaware locking is a major contributor to its poor cache behavior. Hence we propose selective Lock Data co-location (LDC) and Redundant Lock Access Removal (RLAR) to address the lock access misses. We find that even transactions that are completely disjoint access parallel, suffer from costly coherence misses caused by the centralized global time stamp updates and hence we propose the Selective Per-Partition Time Stamp (SPTS) transformation to address this. We show that our transformations are effective in improving the cache behavior of STM applications by reducing the data cache miss latency by 20.15% to 37.14% and improving execution time by 18.32% to 33.12% in five of the 8 STAMP applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental conditions or the presence of interacting components can lead to variations in the structural models of macromolecules. However, the role of these factors in conformational selection is often omitted by in silico methods to extract dynamic information from protein structural models. Structures of small peptides, considered building blocks for larger macromolecular structural models, can substantially differ in the context of a larger protein. This limitation is more evident in the case of modeling large multi-subunit macromolecular complexes using structures of the individual protein components. Here we report an analysis of variations in structural models of proteins with high sequence similarity. These models were analyzed for sequence features of the protein, the role of scaffolding segments including interacting proteins or affinity tags and the chemical components in the experimental conditions. Conformational features in these structural models could be rationalized by conformational selection events, perhaps induced by experimental conditions. This analysis was performed on a non-redundant dataset of protein structures from different SCOP classes. The sequence-conformation correlations that we note here suggest additional features that could be incorporated by in silico methods to extract dynamic information from protein structural models.