275 resultados para pyrazole derivative
Resumo:
In this paper, based on the AdS(2)/CFT1 prescription, we explore the low frequency behavior of quantum two point functions for a special class of strongly coupled CFTs in one dimension whose dual gravitational counterpart consists of extremal black hole solutions in higher derivative theories of gravity defined over an asymptotically AdS spacetime. The quantum critical points thus described are supposed to correspond to a very large value of the dynamic exponent (z -> infinity). In our analysis, we find that quantum fluctuations are enhanced due to the higher derivative corrections in the bulk which in turn increases the possibility of quantum phase transition near the critical point. On the field theory side, such higher derivative effects would stand for the corrections appearing due to the finite coupling in the gauge theory. Finally, we compute the coefficient of thermal diffusion at finite coupling corresponding to Gauss Bonnet corrected charged Lifshitz black holes in the bulk. We observe an important crossover corresponding to z = 5 fixed point. (C) 2015 The Author. Published by Elsevier B.V.
Resumo:
The chiral sensing property of helicin (the derivative of natural product obtained by partial oxidation of salicin, extracted from willow tree (Salix helix)) is reported. The use of helicin as a chiral derivatizing agent for the discrimination of amines and amino alcohols is convincingly established using H-1 NMR spectroscopy. The large chemical shift separation achieved between the discriminated peaks facilitated the accurate quantification of enantiomeric composition. The consistent trend observed in the shifting of imine proton peak (Delta delta) of helicin in all the derivatized molecules might aid the determination of spatial configuration. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The chiral sensing property of helicin (the derivative of natural product obtained by partial oxidation of salicin, extracted from willow tree (Salix helix)) is reported. The use of helicin as a chiral derivatizing agent for the discrimination of amines and amino alcohols is convincingly established using H-1 NMR spectroscopy. The large chemical shift separation achieved between the discriminated peaks facilitated the accurate quantification of enantiomeric composition. The consistent trend observed in the shifting of imine proton peak (Delta delta) of helicin in all the derivatized molecules might aid the determination of spatial configuration. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A hitherto unseen rotation of the isopropyl group in the solid state, predicted to be forbidden based on theoretical investigations, is reported. This C-C rotation observed during the temperature dependent single-crystal-to-single-crystal transformation is attributed to the concomitant changes in molecular structure and intermolecular packing.
Resumo:
The chiral sensing property of helicin (the derivative of natural product obtained by partial oxidation of salicin, extracted from willow tree (Salix helix)) is reported. The use of helicin as a chiral derivatizing agent for the discrimination of amines and amino alcohols is convincingly established using H-1 NMR spectroscopy. The large chemical shift separation achieved between the discriminated peaks facilitated the accurate quantification of enantiomeric composition. The consistent trend observed in the shifting of imine proton peak (Delta delta) of helicin in all the derivatized molecules might aid the determination of spatial configuration. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A series of mononuclear five-coordinate cobalt(II) complexes, Co(dbdmp)(X)]Y, where dbdmp=N,N-diethyl-N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1, 2-diamine, X=N-3(-)/NCO-/NCS- and Y=PF6-/BF4-/ClO4-, have been synthesized and characterized by microanalyses and spectroscopic techniques. Crystal structures of Co(N-3)(dbdmp)]PF6 (1), Co(N-3)(dbdmp)]ClO4 (3), Co(NCO)(dbdmp)]PF6 (4), Co(NCO)(dbdmp)]ClO4 (6), and Co(NCS)(dbdmp)]ClO4 (9) have been solved by single-crystal X-ray diffraction studies and showed that all the complexes have distorted trigonal bipyramidal geometry; PF6- counter anion containing complexes Co(N-3)(dbdmp)]PF6 and Co(NCO)(dbdmp)]PF6 have chiral space groups. The binding ability of synthesized complexes with CT-DNA and bovine serum albumin (BSA) has been studied by spectroscopic methods and viscosity measurements. The experimental results of absorption titration of cobalt(II) complexes with CT-DNA indicate that the complexes have ability to form adducts and they can stabilize the DNA helix. The cobalt(II) complexes exhibit good binding propensity to BSA protein.
Resumo:
DNA minor groove binders are an important class of chemotherapeutic agents. These small molecule inhibitors interfere with various cellular processes like DNA replication and transcription. Several benzimidazole derivatives showed affinity towards the DNA minor groove. In this study we show the synthesis and biological studies of a novel benzimidazole derivative (MH1), that inhibits topoisomerase II activity and in vitro transcription. UV-visible and fluorescence spectroscopic methods in conjunction with Hoechst displacement assay demonstrate that MH1 binds to DNA at the minor groove. Cytotoxic studies showed that leukemic cells are more sensitive to MH1 compared to cancer cells of epithelial origin. Further, we find that MH1 treatment leads to cell cycle arrest at G2/M, at early time points in Molt4 cells. Finally multiple cellular assays demonstrate that MH1 treatment leads to reduction in MMP, induction of apoptosis by activating CASPASE 9 and CASPASE 3. Thus our study shows MH1, a novel DNA minor groove binder, induces cytotoxicity efficiently in leukemic cells by activating the intrinsic pathway of apoptosis.
Resumo:
The design and synthesis is reported of 7-(9H-carbazol-9-yl)-4-methylcoumarin (Cz-Cm), comprising a carbazole donor moiety and a 4-methylcoumarin acceptor unit, for use in a blue organic light-emitting diode. A detailed solid state, theoretical and spectroscopic study was performed to understand the structure-property relationships. The material exhibits deep-blue emission and high photoluminescence quantum yield both in solution and in a doped matrix. A deep-blue electroluminescence emission at 430nm, a maximum brightness of 292cdm(-2) and an external quantum efficiency of 0.4% was achieved with a device configured as follows: ITO/NPD (30nm)/TCTA (20nm)/CzSi(10nm)/10wt% Cz-Cm:DPEPO (10nm)/TPBI (30nm)/LiF (1nm)/Al ITO=indium tin oxide, NPD=N,N-di(1-naphthyl)-N,N-diphenyl-(1,1-biphenyl)-4,4-diamine, TCTA=tris(4-carbazoyl-9-ylphenyl)amine, CzSi=9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole, DPEPO=bis2-(diphenylphosphino)phenyl]ether oxide, TPBI=1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene].
Resumo:
We report here on a series of laboratory experiments on plumes, undertaken with the object of simulating the effect of the heat release that occurs in clouds on condensation of water vapor. The experimental technique used for this purpose relies on ohmic heating generated in an electrically conducting plume fluid subjected to a suitable alternating voltage across specified axial stations in the plume flow [Bhat et al., 1989]. The present series of experiments achieves a value of the Richardson number that is toward the lower end of the range that characteristics cumulus clouds. It is found that the buoyancy enhancement due to heating disrupts the eddy structures in the flow and reduces the dilution owing to entrainment of ambient fluid that would otherwise have occurred in the central region of the plume. Heating also reduces the spread rate of the plume, but as it accelerates the flow as well, the overall specific mass flux in the plume does not show a very significant change at the heat input employed in the experiment. However, there is some indication that the entrainment rate (proportional to the streamwise derivative of the mass flux) is slightly higher immediately after heat injection and slightly lower farther downstream. The measurements support a previous proposal for a cloud scenario [Bhat and Narasimha, 1996] and demonstrate how fresh insights into certain aspects of the fluid dynamics of clouds may be derived from the experimental techniques employed here.
Resumo:
Peroxidative bromination of phenol red to its tetrabromo derivative, bromophenol blue, required vanadate in addition to H2O2 when carried out in the pH range of 5-7. Excess H2O2, with ratio of H2O2:vanadate of 2:1 and above, prevented the reaction. Diperoxovanadate, known to be formed in such reaction mixtures, was ineffective by itself and needed uncomplexed vanadate (V-v) or vanadyl (V-iv) to support bromination. Bromide-assisted reduction of the excess vanadate to vanadyl appeared to be an essential secondary reaction. In the absence of phenol red oxygen was released, and concomitantly bromide was oxidized to a form competent to brominate phenol red added after termination of oxygen release. These findings indicated participation of reactions leading to an intermediate derived from vanadyl and diperoxovanadate, previously described from this laboratory (Arch. Biochem. Biophys. 316, 319-326, 1995). Continuous bromination of phenol red occurred when glucose oxidase-glucose system was used as a source of continuous flow of H2O2. A scheme of reactions involving peroxovanadates (mono-, di-, mu-, and bromo-) is proposed for the formation and utilization of an active brominating species and for the recycling of the product, mono-peroxovanadate, by H2O2, which explains the catalytic role of vanadium in the bromoperoxidation reaction.
Resumo:
In recent years there has been considerable interest in developing new types of gelators of organic solvents.1 Despite the recent advances, a priori design of a gelator for gelling a given solvent has remained a challenging task. Various noncovalent interactions like hydrogen-bonding,2 metal coordination3 etc. have been used as the driving force for the gelation process. A special class of cholesterol-based gelators were reported by Weiss,4 and by Shinkai.5 Gels derived from these molecules have been used for chiral recognition/sensing,6 for studying photo- and metal-responsive functions,7 and as templates to make hollow fiber silica.8 Other types of organogels have been used for designing polymerized 9 and reverse aerogels,10 and in molecular imprinting.11 Hanabusa’s group has recently reported organogels with a bile acid derivative.12 This has prompted us to disclose our results on a novel electron donor–acceptor (EDA) interaction mediated two-component13 gelator system based on the bile acid14 backbone.
Resumo:
The interface between toluene and water has been employed to prepare ultrathin Janus nanocrystalline films of metal oxides, metal chalcogenides and gold, wherein the surface on the organic-side is hydrophobic and the aqueous-side is hydrophilic. We have changed the nature of the metal precursor or capping agent in the organic layer to increase the hydrophobicity. The strategy employed for this purpose is to increase the length of the alkane chain in the precursor or use a perfluroalkane derivative as precursor or as a capping agent. The hydrophobicity and hydrophilicity of the Janus films have been determined by contact angle measurements. The morphology of hydrophobic and hydrophilic sides of the film have been examined by field emission scanning electron microscopy.
Resumo:
As the conventional MOSFET's scaling is approaching the limit imposed by short channel effects, Double Gate (DG) MOS transistors are appearing as the most feasible candidate in terms of technology in sub-45nm technology nodes. As the short channel effect in DG transistor is controlled by the device geometry, undoped or lightly doped body is used to sustain the channel. There exits a disparity in threshold voltage calculation criteria of undoped-body symmetric double gate transistors which uses two definitions, one is potential based and the another is charge based definition. In this paper, a novel concept of "crossover point'' is introduced, which proves that the charge-based definition is more accurate than the potential based definition.The change in threshold voltage with body thickness variation for a fixed channel length is anomalous as predicted by potential based definition while it is monotonous for charge based definition.The threshold voltage is then extracted from drain currant versus gate voltage characteristics using linear extrapolation and "Third Derivative of Drain-Source Current'' method or simply "TD'' method. The trend of threshold voltage variation is found same in both the cases which support charge-based definition.
Resumo:
As the conventional MOSFETs scaling is approaching the limit imposed by short channel effects, Double Gate (DG) MOS transistors are appearing as the most feasible andidate in terms of technology in sub-45nm technology nodes. As the short channel effect in DG transistor is controlled by the device geometry, undoped or lightly doped body, is used to sustain the channel. There exits a disparity in threshold voltage calculation criteria of undoped-body symmetric double gate transistors which uses two definitions, one is potential based and the another is charge based definition. In this paper, a novel concept of "crossover point" is introduced, which proves that the charge-based definition is more accurate than the potential based definition. The change in threshold voltage with body thickness variation for a fixed channel length is anomalous as predicted by, potential based definition while it is monotonous for change based definition. The threshold voltage is then extracted from drain currant versus gate voltage characteristics using linear extrapolation and "Third Derivative of Drain-Source Current" method or simply "TD" method. The trend of threshold voltage variation is found some in both the cases which support charge-based definition.
Resumo:
Dialkyl (3-aryl-l,2,4-oxadiazol-5-yl)phosphonate6sa -h have been obtained by 1,3-dipolar cycloaddition of arenenitrile oxides 5a-f to dialkyl phosphorocyanidates (4a and 4b) in yields ranging between 30% and 58%. A standardized method for obtaining cyanidates 4a and 4b has been established. The diethyl thiophosphorocyanidate (4c) is less reactive than 4a and 4b, only the 3-(4'-nitrophenyl) derivative 6i being obtainable. While the IR and NMFt spectra of 6a-i were unexceptional, their UV spectra showed evidence of conjugative interaction in high degrees between the phosphonate and heterocyclic moieties as well as a varying conjugative interaction between the heterocyclic and aryl moieties. The oxadiazoles 6a-h are thermally labile and yield trialkyl phosphates 7 as the only identifiable products. A mechanism based on the intermediacy of monomeric alkyl metaphosphate 11 in the formation of trialkyl phosphate was postulated, and supportive evidence in the form of trapping the metaphosphate with acetophenone has been obtained.