73 resultados para population momentum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite element method for solving multidimensional population balance systems is proposed where the balance of fluid velocity, temperature and solute partial density is considered as a two-dimensional system and the balance of particle size distribution as a three-dimensional one. The method is based on a dimensional splitting into physical space and internal property variables. In addition, the operator splitting allows to decouple the equations for temperature, solute partial density and particle size distribution. Further, a nodal point based parallel finite element algorithm for multi-dimensional population balance systems is presented. The method is applied to study a crystallization process assuming, for simplicity, a size independent growth rate and neglecting agglomeration and breakage of particles. Simulations for different wall temperatures are performed to show the effect of cooling on the crystal growth. Although the method is described in detail only for the case of d=2 space and s=1 internal property variables it has the potential to be extendable to d+s variables, d=2, 3 and s >= 1. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of N-body simulations we investigate the impact of minor mergers on the angular momentum and dynamical properties of the merger remnant. Our simulations cover a range of initial orbital characteristics and gas-to-stellar mass fractions (from 0 to 20%), and include star formation and supernova feedback. We confirm and extend previous results by showing that the specific angular momentum of the stellar component always decreases independently of the orbital parameters or morphology of the satellite, and that the decrease in the rotation velocity of the primary galaxy is accompanied by a change in the anisotropy of the orbits. However, the decrease affects only the old stellar population, and not the new population formed from gas during the merging process. This means that the merging process induces an increasing difference in the rotational support of the old and young stellar components, with the old one lagging with respect to the new. Even if our models are not intended specifically to reproduce the Milky Way and its accretion history, we find that, under certain conditions, the modeled rotational lag found is compatible with that observed in the Milky Way disk, thus indicating that minor mergers can be a viable way to produce it. The lag can increase with the vertical distance from the disk midplane, but only if the satellite is accreted along a direct orbit, and in all cases the main contribution to the lag comes from stars originally in the primary disk rather than from stars in the satellite galaxy. We also discuss the possibility of creating counter-rotating stars in the remnant disk, their fraction as a function of the vertical distance from the galaxy midplane, and the cumulative effect of multiple mergers on their creation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anisotropic emission of gravitational waves (GWs) from inspiralling compact binaries leads to the loss of linear momentum and hence gravitational recoil of the system. The loss rate of linear momentum in the far-zone of the source (a nonspinning binary system of black holes in quasicircular orbit) is investigated at the 2.5 post-Newtonian (PN) order and used to provide an analytical expression in harmonic coordinates for the 2.5PN accurate recoil velocity of the binary accumulated in the inspiral phase. The maximum recoil velocity of the binary system at the end of its inspiral phase (i.e at the innermost stable circular orbit (ISCO)) estimated by the 2.5PN formula is of the order of 4 km s(-1) which is smaller than the 2PN estimate of 22 km s(-1). Going beyond inspiral, we also provide an estimate of the more important contribution to the recoil velocity from the plunge phase. The maximum recoil velocity at the end of the plunge, involving contributions both from inspiral and plunge phase, for a binary with symmetric mass ratio nu = 0.2 is of the order of 182 km s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Third World hinterlands provide most of the settings in which the quality of human life has improved the least over the decade since Our Common Future was published. This low quality of life promotes a desire for large number of offspring, fuelling population growth and an exodus to the urban centres of the Third World, Enhancing the quality of life of these people in ways compatible with the health of their environments is therefore the most significant of the challenges from the perspective of sustainable development. Human quality of life may be viewed in terms of access to goods, services and a satisfying social role. The ongoing processes of globalization are enhancing flows of goods worldwide, but these hardly reach the poor of Third World countrysides. But processes of globalization have also vastly improved everybody's access to Information, and there are excellent opportunities of putting this to good use to enhance the quality of life of the people of Third World countrysides through better access to education and health. More importantly, better access to information could promote a more satisfying social role through strengthening grass-roots involvement in development planning and management of natural resources. I illustrate these possibilities with the help of a series of concrete experiences form the south Indian state of Kerala. Such an effort does not call for large-scare material inputs, rather it calls for a culture of inform-and-share in place place of the prevalent culture of control-and-command. It calls for openness and transparency in transactions involving government agencies, NGOs, and national and transnational business enterprises. It calls for acceptance of accountability by such agencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solution of a bivariate population balance equation (PBE) for aggregation of particles necessitates a large 2-d domain to be covered. A correspondingly large number of discretized equations for particle populations on pivots (representative sizes for bins) are solved, although at the end only a relatively small number of pivots are found to participate in the evolution process. In the present work, we initiate solution of the governing PBE on a small set of pivots that can represent the initial size distribution. New pivots are added to expand the computational domain in directions in which the evolving size distribution advances. A self-sufficient set of rules is developed to automate the addition of pivots, taken from an underlying X-grid formed by intersection of the lines of constant composition and constant particle mass. In order to test the robustness of the rule-set, simulations carried out with pivotwise expansion of X-grid are compared with those obtained using sufficiently large fixed X-grids for a number of composition independent and composition dependent aggregation kernels and initial conditions. The two techniques lead to identical predictions, with the former requiring only a fraction of the computational effort. The rule-set automatically reduces aggregation of particles of same composition to a 1-d problem. A midway change in the direction of expansion of domain, effected by the addition of particles of different mean composition, is captured correctly by the rule-set. The evolving shape of a computational domain carries with it the signature of the aggregation process, which can be insightful in complex and time dependent aggregation conditions. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The loss rate of linear momentum from a binary system composed of compact objects (radially falling towards each other under mutual gravitational influence) has been investigated using the multipolar post-Minkowskian approach. The 2.5PN accurate analytical formula for the linear momentum flux is provided, in terms of the separation of the two objects, in harmonic coordinates, both for a finite and an infinite initial separation. The 2.5PN formulas for the linear momentum flux are finally used to estimate the recoil velocity accumulated during a premerger phase of the binary evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article attempts to present analysis based on the provisional results of the Census 2011. While there is no doubt that the human social organization of the country is undergoing a transition, the nature of growth however is subject to the lens through which this is viewed. Noting the dichotomy of urban and rural definitions, we question the rationality of the ‘urban’ definition and its relevance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation due to pure advection in the internal property coordinates. The key idea is to split the high-dimensional population balance equation into two low-dimensional equations, and discretize the low-dimensional equations separately. In the proposed splitting scheme, the shape of the physical domain can be arbitrary, and different discretizations can be applied to the low-dimensional equations. In particular, we discretize the physical and internal spaces with the standard Galerkin and Streamline Upwind Petrov Galerkin (SUPG) finite elements, respectively. The stability and error estimates of the Galerkin/SUPG finite element discretization of the population balance equation are derived. It is shown that a slightly more regularity, i.e. the mixed partial derivatives of the solution has to be bounded, is necessary for the optimal order of convergence. Numerical results are presented to support the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An energy-momentum conserving time integrator coupled with an automatic finite element algorithm is developed to study longitudinal wave propagation in hyperelastic layers. The Murnaghan strain energy function is used to model material nonlinearity and full geometric nonlinearity is considered. An automatic assembly algorithm using algorithmic differentiation is developed within a discrete Hamiltonian framework to directly formulate the finite element matrices without recourse to an explicit derivation of their algebraic form or the governing equations. The algorithm is illustrated with applications to longitudinal wave propagation in a thin hyperelastic layer modeled with a two-mode kinematic model. Solution obtained using a standard nonlinear finite element model with Newmark time stepping is provided for comparison. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is concerned with the evolution of haploid organisms that reproduce asexually. In a seminal piece of work, Eigen and coauthors proposed the quasispecies model in an attempt to understand such an evolutionary process. Their work has impacted antiviral treatment and vaccine design strategies. Yet, predictions of the quasispecies model are at best viewed as a guideline, primarily because it assumes an infinite population size, whereas realistic population sizes can be quite small. In this paper we consider a population genetics-based model aimed at understanding the evolution of such organisms with finite population sizes and present a rigorous study of the convergence and computational issues that arise therein. Our first result is structural and shows that, at any time during the evolution, as the population size tends to infinity, the distribution of genomes predicted by our model converges to that predicted by the quasispecies model. This justifies the continued use of the quasispecies model to derive guidelines for intervention. While the stationary state in the quasispecies model is readily obtained, due to the explosion of the state space in our model, exact computations are prohibitive. Our second set of results are computational in nature and address this issue. We derive conditions on the parameters of evolution under which our stochastic model mixes rapidly. Further, for a class of widely used fitness landscapes we give a fast deterministic algorithm which computes the stationary distribution of our model. These computational tools are expected to serve as a framework for the modeling of strategies for the deployment of mutagenic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosomal translocations are characteristic features of many cancers, especially lymphoma and leukemia. However, recent reports suggest that many chromosomal translocations can be found in healthy individuals, although the significance of this observation is still not clear. In this review, we summarize recent studies on chromosomal translocations in healthy individuals carried out in different geographical areas of the world and discuss the relevance of the observation with respect to oncogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we explore fundamental limits on the number of tests required to identify a given number of ``healthy'' items from a large population containing a small number of ``defective'' items, in a nonadaptive group testing framework. Specifically, we derive mutual information-based upper bounds on the number of tests required to identify the required number of healthy items. Our results show that an impressive reduction in the number of tests is achievable compared to the conventional approach of using classical group testing to first identify the defective items and then pick the required number of healthy items from the complement set. For example, to identify L healthy items out of a population of N items containing K defective items, when the tests are reliable, our results show that O(K(L - 1)/(N - K)) measurements are sufficient. In contrast, the conventional approach requires O(K log(N/K)) measurements. We derive our results in a general sparse signal setup, and hence, they are applicable to other sparse signal-based applications such as compressive sensing also.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend our analysis of transverse single spin asymmetry in electroproduction of J/psi to include the effect of the scale evolution of the transverse momentum dependent (TMD) parton distribution functions and gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS, and eRHIC energies using the color evaporation model of charmonium production, using an analytically obtained approximate solution of TMD evolution equations discussed in the literature. We find that there is a reduction in the asymmetry compared with our predictions for the earlier case considered by us, wherein the Q(2) dependence came only from DGLAP evolution of the unpolarized gluon densities and a different parametrization of the TMD Sivers function was used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High elevation montane areas are called ``sky islands'' when they occur as a series of high mountains separated by lowland valleys. Different climatic conditions at high elevations makes sky islands a specialized type of habitat, rendering them naturally fragmented compared to more continuous habitat at lower elevations. Species in sky islands face unsuitable climate in the intervening valleys when moving from one montane area to another. The high elevation shola-grassland mosaic in the Western Ghats of southern India form one such sky island complex. The fragmented patches make this area ideal to study the effect of the spatial orientation of suitable habitat patches on population genetic structure of species found in these areas. Past studies have suggested that sky islands tend to have genetically structured populations, possibly due to reduced gene flow between montane areas. To test this hypothesis, we adopted the comparative approach. Using Amplified Fragment Length Polymorphisms, we compared population genetic structures of two closely related, similar sized butterfly species: Heteropsis oculus, a high elevation shola-grassland specialist restricted to the southern Western Ghats, and Mycalesis patnia, found more continuously distributed in lower elevations. In all analyses, as per expectation the sky island specialist H. oculus exhibited a greater degree of population genetic structure than M. patnia, implying a difference in geneflow. This difference in geneflow in turn appears to be due to the natural fragmentation of the sky island complexes. Detailed analysis of a subset of H. oculus samples from one sky island complex (the Anamalais) showed a surprising genetic break. A possible reason for this break could be unsuitable conditions of higher temperature and lower rainfall in the intervening valley region. Thus, sky island species are not only restricted by lack of habitat continuity between montane areas, but also by the nature of the intervening habitat.