174 resultados para polythiophene and derivatives
Resumo:
The quenching of fluorescence of the free-base tetraphenylporphyrin, H2TPP, and its metal derivatives, MgTPP and ZnTPP by diverse iron(III) complexes, [Fe(CN)6]3−, Fe(acac)3, [Fe(mnt)2]−, Fe(Salen)Cl, [Fe4S4(SPh)4]2−·, FeTPPCl and [Fe(Cp)2]+ has been studied both in homogeneous medium (CH3CN) and micellar media, SDS., CTAB and Triton X-100. The quenching efficiencies are analysed in terms of diffusional encounters and it has been possible to separate static quenching components. The quenching constants are dependent on the nature of the ligating atoms around iron(III) and also on the extent of π-conjugation of the ligands. The quenching mechanism has been investigated using steady-state irradiation experiments. Evidence for oxidative quenching by iron(III) complexes was obtained, though the spin multiplicities of the excited electronic states of iron(III) complexes permit both energy and electron transfer mechanisms for quenching of the singlet excited state of the porphyrins.
Resumo:
The dideoxygenation reaction of 1,3;4,6-di-O-alkylidene-2,5-di-S-methylthiocarbonyl-D-mannitol derivatives under Barton-McCombie reaction conditions gave the hexahydrodipyranothiophenes 4 and 7 instead of the expected 2,5-dideoxy products. Structural and conformational information on these novel derivatives has been obtained by NMR spectroscopy, single-crystal X-ray crystallography and molecular mechanics calculations.
Resumo:
Ceric ammonium sulfate, CAS, oxidizes naphthalene to 1,4-naphthoquinone in essentially quantitative yield in CH3CN-dil. H2SO4. Stoichiometric studies indicate that 6 mol of CAS are required for the oxidation of 1 mol of naphthalene to 1,4-naphthoquinone. Kinetic investigations reveal that the reaction takes place through initial formation of a 1:1 complex of naphthalene and cerium(IV) in an equilibrium step followed by slow decomposition of the complex to naphthalene radical cation. Kinetic results on the effects of acid strength, polarity of the medium, temperature and substituents are in accordance with this mechanism. Further conversion of the radical cation into 1,4-naphthoquinone takes place in fast steps involving a further 5 mol of cerium(IV) and 2 mol of H2O.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants as well as well-known carcinogens. Therefore, it is important to develop an effective receptor for the detection and quantification of such molecules in solution. In view of this, a 1,3-dinaphthalimide derivative of calix4]arene (L) has been synthesized and characterized, and the structure has been established by single crystal XRD. In the crystal lattice, intermolecular arm-to-arm pi center dot center dot center dot pi overlap dominates and thus L becomes a promising receptor for providing interactions with the aromatic species in solution, which can be monitored by following the changes that occur in its fluorescence and absorption spectra. On the basis of the solution studies carried out with about 17 derivatives of the aromatic guest molecular systems, it may be concluded that the changes that occur in the fluorescence intensity seem to be proportional to the number of aromatic rings present and thus proportional to the extent of pi center dot center dot center dot pi interaction present between the naphthalimide moieties and the aromatic portion of the guest molecule. Though the nonaromatic portion of the guest species affects the fluorescence quenching, the trend is still based on the number of rings present in these. Four guest aldehydes are bound to L with K-ass of 2000-6000 M-1 and their minimum detection limit is in the range of 8-35 mu M. The crystal structure of a naphthaldehyde complex, L.2b, exhibits intermolecular arm-to-arm as well as arm-to-naphthaldehyde pi center dot center dot center dot pi interactions. Molecular dynamics studies of L carried out in the presence of aromatic aldehydes under vacuum as well as in acetonitrile resulted in exhibiting interactions observed in the solid state and hence the changes observed in the fluorescence and absorption spectra are attributable for such interactions. Complex formation has also been delineated through ESI MS studies. Thus L is a promising receptor that can recognize PAHs by providing spectral changes proportional to the aromatic conjugation of the guest and the extent of aromatic pi center dot center dot center dot pi interactions present between L and the guest.
Resumo:
Pyridinium hexafluorostannate, (C5H5NH)2SnF6, has been prepared by the reaction of stannous chloride or tin metal with pyridinium poly(hydrogen fluoride), PPHF, and identified by chemical analysis, IR and NMR (H-1, F-19, C-13). Making use of (C5H5NH)2SnF6 as a precursor, the following important hexafluorostannate salts have been synthesized in high yields at room temperature by ionic exchange: M2SnF6 (M = NH4, Na, K, Rb, Cs) and BaSnF6. These salts have been characterised by chemical analysis and infrared spectroscopy. Indexed powder X-ray diffraction data for Na2SnF6, Rb2SnF6 and Cs2SnF6 have been reported.
Resumo:
Mass spectrometric studies show that contact-arc vaporization of graphite in a partial atmosphere of N2 or NH3 yields nitrogenous products tentatively assigned to species such as C70N2, C59N6, C59N4 and C59N2 involving addition of or substitution by nitrogen along with the species due to C2 and C4 losses. Mass spectrometry and other techniques have been employed to identify products of the nucleophilic addition of aliphatic amines to C60 and C70 in solution phase.
Resumo:
Polycrystalline samples of oxides of the general formula LiM(V)M(VI)O(6) (M(V) = Nb, Ta; M(VI) = Mo, W), crystallizing in a non-centrosymmetric (space group P (4) over bar 2(1)m) trirutile structure, exhibit second harmonic generation (SHG) of 1064 nm radiation with efficiencies 15-45 times that of alpha-quartz; interestingly, the SHG response is retained by the protonated derivatives HM(V)M(VI)O(6) . xH(2)O, and their n-alkylamine intercalates as well.
Resumo:
A regiospecific reduction of quinolines (and 1,10-phenanthroline) into the corresponding 1,2,3,4-tetrahydro derivatives using a combination of sodium cyanoborohydride and boron trifluoride etherate in refluxing methanol is described. Under the same conditions indole and acridine reduced to the corresponding dihydroderivatives, whereas acyl group transfer from oxygen to nitrogen atom is also noticed in the case of 8-acyloxyquinolines.
Resumo:
The stabilities of a number of small adducts as well as larger hydrides of C-60 and C-70 are reported using semiempirical MO methods. The data are shown to be consistent with the nature of bond alternation in the parent fullerenes and strain effects in the cage systems.
Resumo:
Pyridinium hexafluorotitanate, (C5H5NH)(2)TiF6, has been prepared by the reaction of titanium metal with pyridinium poly(hydrogen fluoride), PPHF, at room temperature. Making use of (C5H5NH)(2)TiF6 as a precursor, ammonium and alkali metal hexafluorotitanates, M(2)TiF(6) (M = NH4, Na, K, Rb and Cs) have been synthesized by metathesis. These hexafluorotitanates have been characterized by chemical analyses, infrared and NMR (H-1 and F-19) spectroscopy and powder X-ray diffraction methods. Indexed powder X-ray diffraction data for Rb2TiF6 and Cs2TiF6 have been reported.
Resumo:
Levamisole, the imidazo2,1-b]thiazole derivative has been reported as a potential antitumor agent. In the present study, we synthesized, characterized and evaluated biological activity of its novel analogues with substitution in the aralkyl group and on imidazothiadiazole molecules with same chemical backbone but different side chains namely 2-aralkyl-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]thiadiazoles (SCR1), 2-aralkyl-5-bromo-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]-thiadiaz oles (SCR2), 2-aralkyl-5-formyl-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]-thiadia zoles (SCR3) and 2-aralkyl-5-thiocyanato-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]-th iadiazoles (SCR4) on leukemia cells. The cytotoxic studies showed that 3a, 4a, and 4c exhibited strong cytotoxicity while others had moderate cytotoxicity. Among these we chose 4a (IC50, 8 mu M) for understanding its mechanism of cytotoxicity. FACS analysis in conjunction with mitochondrial membrane potential and DNA fragmentation studies indicated that 4a induced apoptosis without cell cycle arrest suggesting that it could be used as a potential chemotherapeutic agent. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Two new classes of mono- and bis-D-pi-A cryptand derivatives with a flexible and a rigid cryptand core have been synthesized. The linear and nonlinear optical properties of these molecules are probed. The three dimensional cavity of the cryptand moiety has been utilized to modulate the SHG intensity to different extents in solution with metal ion inputs such as Ni-II,Cu-II,Zn-II, and Cd-II. We also report that decomplexation events can be used to reversibly modulate their NLO responses.
Resumo:
Conjugated polymers are intensively pursued as candidate materials for emission and detection devices with the optical range of interest determined by the chemical structure. On the other hand the optical range for emission and detection can also be tuned by size selection in semiconductor nanoclusters. The mechanisms for charge generation and separation upon optical excitation, and light emission are different for these systems. Hybrid systems based on these different class of materials reveal interesting electronic and optical properties and add further insight into the individual characteristics of the different components. Multilayer structures and blends of these materials on different substrates were prepared for absorption, photocurrent (Iph), photoluminescence (PL) and electroluminscence (EL) studies. Polymers chosen were derivatives of polythiophene (PT) and polyparaphenylenevinylene (PPV) along with nanoclusters of cadmium sulphide of average size 4.4 nm (CdS-44). The photocurrent spectral response in these systems followed the absorption response around the band edges for each of the components and revealed additional features, which depended on bias voltage, thickness of the layers and interfacial effects. The current-voltage curves showed multi-component features with emission varying for different regimes of voltage. The emission spectral response revealed additive features and is discussed in terms of excitonic mechanisms.
Resumo:
CD4 is present on the surface of T-lymphocytes and is the primary cellular receptor for HIV-1. CD4 consists of a cytoplasmic tail, one transmembrane region, and four extracellular domains, D1-D4. A construct consisting of the first two domains of CD4 (CD4D12) is folded and binds gp120 with similar affinity as soluble 4-domain CD4 (sCD4). However, the first domain alone (CD4D1) was previously shown to be largely unfolded and had 3-fold weaker affinity for gp120 when compared to sCD4 [Sharma, D.; et al. (2005) Biochemistry 44, 16192-16202]. We now report the design and characterization of three single-site mutants of CD4D12 (G6A, L51I, and V86L) and one multisite mutant of CD4D1 (G6A/L511/L5K/F98T). G6A, L51I, and V86L are cavity-filling mutations while L5K and F98T are surface mutations which were introduced to minimize the aggregation of CD4D1 upon removal of the second domain. Two mutations, G6A and V86L in CD4D12 increased the stability and yield of the protein relative to the wild-type protein. The mutant CD4D1 (CD4D1a) with the 4 mutations was folded and more stable compared to the original CD4D1, but both bound gp120 with comparable affinity. In in vitro neutralization assays, both CD4D1a and G6A-CD4D12 were able to neutralize diverse HIV-1 viruses with similar IC(50)s as 4-domain CD4. These stabilized derivatives of human CD4 can be useful starting points for the design of other more complex viral entry inhibitors.
Resumo:
Previous studies of complexes of Mycobacterium tuberculosis PanK (MtPanK) with nucleotide diphosphates and non-hydrolysable analogues of nucleoside triphosphates in the presence or the absence of pantothenate established that the enzyme has dual specificity for ATP and GTP, revealed the unusual movement of ligands during enzyme action and provided information on the effect of pantothenate on the location and conformation of the nucleotides at the beginning and the end of enzyme action. The X-ray analyses of the binary complexes of MtPanK with pantothenate, pantothenol and N-nonylpantothenamide reported here demonstrate that in the absence of nucleotide these ligands occupy, with a somewhat open conformation, a location similar to that occupied by phosphopantothenate in the `end' complexes, which differs distinctly from the location of pantothenate in the closed conformation in the ternary `initiation' complexes. The conformation and the location of the nucleotide were also different in the initiation and end complexes. An invariant arginine appears to play a critical role in the movement of ligands that takes place during enzyme action. The work presented here completes the description of the locations and conformations of nucleoside diphosphates and triphosphates and pantothenate in different binary and ternary complexes, and suggests a structural rationale for the movement of ligands during enzyme action. The present investigation also suggests that N-alkylpantothenamides could be phosphorylated by the enzyme in the same manner as pantothenate.