165 resultados para polymeric microbeads
Resumo:
Structures of lithium, sodium, magnesium, and calcium complexes of NJ-dimethylformamide (DMF) have been investigated by X-ray crystallography. Complexes with the formulas LiCl.DMF.1/2H20, NaC104.2DMF, CaC12.2DMF.2H20, and Mg(C104)2.6DMF crystallized in space groups P2]/c, P2/c, Pi, and Ella, respectively, with the following cell dimensions: Li complex, a = 13.022 (7) A, b = 5.978 (4) A, c = 17.028 (10) A, = 105.48 (4)O, Z = 8; Na complex, a = 9.297 (4)A, b = 10.203 (3) A, c = 13.510 (6) A, /3 = 110.08 (4)O, Z = 4; Ca complex, a = 6.293 (4) A, b = 6.944 (2) A, c = 8.853(5) A, a = 110.15 (3)O, /3 = 105.60 (6)", y = 95.34 (5)", Z = 1; Mg complex, a = 20.686 (11) A, b = 10.962 (18) A,c = 14.885 (9) A, /3 = 91.45 (5)O, Z = 4. Lithium is tetrahedrally coordinated while the other three cations are octahedrally coordinated; the observed metal-oxygen distances are within the ranges generally found in oxygen donor complexes of these metals. The lithium and sodium complexes are polymeric, with the amide and the anion forming bridging groups between neighboring cations. The carbonyl distances become longer in the complexes accompanied by a proportionate decrease in the length of the central C-N bond of the amide; the N-C bond of the dimethylamino group also shows some changes in the complexes. The cations do not deviate significantly from the lone-pair direction of the amide carbonyl and remain in the amide plane. Infrared spectra of the complexes reflect the observed changes in the amide bond distances.
Resumo:
Several iron(II, III) complexes of N, N'-di(2-)pyridyl thiourea have been synthesized. The preparation of the complexes from iron(III) salts proceeds through a reduction of iron(III) to iron(II) followed by a subsequent reoxidation. The Moumlssbauer, electronic and infrared spectra of these complexes have been measured. The results are concordant with the coordination of pyridine nitrogens and thiocarbonyl sulfur yielding polymeric complexes. A variable temperature NMR study of the free ligand shows that two conformation are accessible for it in solution at subambient temperatures.
Resumo:
Vanadate in the polymeric form of decavanadate, but not other forms, stimulated oxidation of NADH to NAD+ NADPH was also oxidized with comparable rates. This oxidation of NADH was accompanied by uptake of oxygen and generated hydrogen peroxide with the following stoichiometry: NADH + H+ + O2 → NAD+ + H2O2. The reaction followed second-order kinetics. The rate was dependent on the concentration of both NADH and vanadate and increased with decreasing pH. The reaction had an obligatory requirement for phosphate ions. Esr studies in the presence of the spin trap dimethyl pyrroline N oxide indicated the involvement of Superoxide anion as an intermediate. The reaction was sensitive to Superoxide dismutase and other scavengers of superoxide anions.
Resumo:
The importance of the study of thermal degradation of polymeric fuels arises from their role in the combustion of solid propellants. Estimation of the condensed-phase heat release during combustion can be facilitated by the knowledge of the enthalpy change associated with the polymer degradation process. Differential scanning calorimetry has been used to obtain enthalpy data. Kinetic studies on the polymeric degradation process have been carried out with the following objectives. The literature values of activation energies are quite diverse and differ from author to author. The present study has tried to locate possible reasons for the divergence in the reported activation energy values. A value of 30 kcal has been obtained and found to be independent of the technique employed. The present data on the kinetics support to chain-end initiation and unzipping process. The activation energies are further found to be independent of the atmosphere in which the degradation of polymer fuel is carried out. The degradation in air, N2, and O2 all yield a value of 30 kcal/mole for the activation energies.
Resumo:
In view of the recent interest in compounds containing M-SH units, an organotin hydrosulfide compound, Me2Sn(SH)(O2CMe) (1) was prepared by controlled hydrolysis of the diorganotin thioacetate. Under similar mild hydrolytic conditions the corresponding benzoate could not be isolated. Instead, the thiobenzoate complex, Me2Sn(SOCPh)(2) (3) was obtained in excellent yields indicating that there was no hydrolysis. Both 1 and 3 were characterized by X-ray crystallography. Some properties of the polymeric compound 1, such as spectral, electrical conductivity and NLO response were also studied. The reactivity and properties were explained using density functional calculations.
Resumo:
Complexes of 2,6-dimethylpyridine 1-oxide with lanthanide iodides of the formulaeLn(2,6-LTNO)5I3 whereLn=La, Tb and Yb,Ln(2,6-LTNO)4I3 whereLn=Pr and Nd and Er(2,6-LTNO)4.5I3 have been prepared and characterised by chemical analysis, infrared and conductance studies. Infrared and conductance data have been interpreted in terms of dimeric (or polymeric) structures involving bridging amine oxide groups.
Resumo:
Nanoporous anatase with a thin interconnected filmlike morphology has been synthesized in a single step by coupling a nonhydrolytic condensation reaction of a Ti precursor with a hybrid sol-gel combustion reaction. The method combines the advantages of a conventional sol-gel method for the formation of porous structures with the high crystallinity of the products obtained by combustion methods to yield highly crystalline, phase-pure nanoporous anatase. The generation of pores is initiated by the formation of reverse micelles in a polymeric polycondensation product, which expand during heating, leading to larger pores. A reaction scheme involving a complex formation and nonhydrolytic polycondensation reaction with ester elimination leads to the formation of ail extended Ti-O-Ti network. The effect of process parameters, such as temperature and relative ratio of cosurfactants, on phase formation has been studied. The possibility of band gap engineering by controlled doping during synthesis and the possibility of attachment of molecular/nanoparticle sensitizers provide opportunities for easy preparation of photoanodes for solar cell applications.
Resumo:
Software packages NUPARM and NUCGEN, are described, which can be used to understand sequence directed structural variations in nucleic acids, by analysis and generation of non-uniform structures. A set of local inter basepair parameters (viz. tilt, roll, twist, shift, slide and rise) have been defined, which use geometry and coordinates of two successive basepairs only and can be used to generate polymeric structures with varying geometries for each of the 16 possible dinucleotide steps. Intra basepair parameters, propeller, buckle, opening and the C6...C8 distance can also be varied, if required, while the sugar phosphate backbone atoms are fixed in some standard conformation ill each of the nucleotides. NUPARM can be used to analyse both DNA and RNA structures, with single as well as double stranded helices. The NUCGEN software generates double helical models with the backbone fixed in B-form DNA, but with appropriate modifications in the input data, it can also generate A-form DNA ar rd RNA duplex structures.
Resumo:
In the present work we report a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant (cationic, anionic, non ionic and polymeric), without the use of any templates. The method is simple, inexpensive, and helps one to prepare nanostructures in quick time, measured in seconds and minutes. This method has been applied successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with changes in different process parameters, such as microwave power, irradiation time, identity of solvent, type of surfactant, and its concentration.
Resumo:
Dispersibility of colloidal barium titanate suspensions is reviewed with an emphasis on the use of various polyelectrolytes as dispersants. The fundamentals of colloidal stability are discussed followed by the colloidal properties of barium titanate powder. Dispersion behavior of BaTiO3 in both nonaqueous and aqueous media has been reviewed. Several studies on the stabilization of micron and nano-sized barium titanate using various polymeric dispersants and a rhamnolipid biosurfactant are presented and discussed. The article attempts to provide a comprehensive review of the current state-of-the-art in the area of colloidal processing of barium titanate.
Resumo:
Investigations on the electrical switching behavior and thermal studies using Alternating Differential Scanning Calorimetry have been undertaken on bulk, melt-quenched Ge22Te78-,Is (3 <= x <= 10) chalcohalide glasses. All the glasses studied have been found to exhibit memory-type electrical switching. The threshold voltages of Ge22Te78-I-x(x) glasses have been found to increase with the addition of iodine and the composition dependence of threshold voltages of Ge22Te78-xIx glasses exhibits a cusp at 5 at.% of iodine. Also, the variation with composition of the glass transition temperature (Tg) of Ge22Te78-I-x(x) glasses, exhibits a broad hump around this composition. Based on the present results, the composition x = 5 has been identified as the inverse rigidity percolation threshold at which Ge22Te78-I-x(x) glassy system exhibits a change from a stressed rigid amorphous solid to a flexible polymeric glass. Further, a sharp minimum is seen in the composition dependence of non-reversing enthalpy (Delta H-nr) of Ge22Te78-I-x(x) glasses at x = 5, which is suggestive of a thermally reversing window at this composition. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
RECENT work on the lower oxide of sulphur1,2 has established that disulphur monoxide (S2O) or its polymeric form is produced when sulphur is burnt in oxygen under reduced pressure. It has now been shown that it is possible to make use of an oxide of a heavy metal as a source of limited supply of oxygen to prepare the disulphur monoxide. For example, when a mixture of finely powdered cupric oxide and sulphur (1 : 5 by weight) is heated under vacuum in a glass tube gaseous products are evolved. which, on cooling in a trap surrounded by liquid air, will give an orange-red condensate (S2O)x. This condensate also gives off sulphur dioxide in stages as the temperature is raised, finally leaving a residue of elemental sulphur. Copper sulphide and excess of sulphur are left behind in the reaction tube.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.
Resumo:
The present study was designed to improve the bioavailability of forskolin by the influence of precorneal residence time and dissolution characteristics. Nanosizing is an advanced approach to overcome the issue of poor aqueous solubility of active pharmaceutical ingredients. Forskolin nanocrystals have been successfully manufactured and stabilized by poloxamer 407. These nanocrystals have been characterized in terms of particle size by scanning electron microscopy and dynamic light scattering. By formulating Noveon AA-1 polycarbophil/poloxamer 407 platforms, at specific concentrations, it was possible to obtain a pH and thermoreversible gel with a pH(gel)/T-gel close to eye pH/temperature. The addition of forskolin nanocrystals did not alter the gelation properties of Noveon AA-1 polycarbophil/poloxamer 407 and nanocrystal properties of forskolin. The formulation was stable over a period of 6 months at room temperature. In vitro release experiments indicated that the optimized platform was able to prolong and control forskolin release for more than 5 h. The in vivo studies on dexamethasone-induced glaucomatous rabbits indicated that the intraocular pressure lowering efficacy for nanosuspension/hydrogel systems was 31% and lasted for 12 h, which is significantly better than the effect of traditional eye suspension (18%, 4-6 h). Hence, our investigations successfully prove that the pH and thermoreversible polymeric in situ gel-forming nanosuspension with ability of controlled drug release exhibits a greater potential for glaucoma therapy.