56 resultados para optimality
Resumo:
An n-length block code C is said to be r-query locally correctable, if for any codeword x ∈ C, one can probabilistically recover any one of the n coordinates of the codeword x by querying at most r coordinates of a possibly corrupted version of x. It is known that linear codes whose duals contain 2-designs are locally correctable. In this article, we consider linear codes whose duals contain t-designs for larger t. It is shown here that for such codes, for a given number of queries r, under linear decoding, one can, in general, handle a larger number of corrupted bits. We exhibit to our knowledge, for the first time, a finite length code, whose dual contains 4-designs, which can tolerate a fraction of up to 0.567/r corrupted symbols as against a maximum of 0.5/r in prior constructions. We also present an upper bound that shows that 0.567 is the best possible for this code length and query complexity over this symbol alphabet thereby establishing optimality of this code in this respect. A second result in the article is a finite-length bound which relates the number of queries r and the fraction of errors that can be tolerated, for a locally correctable code that employs a randomized algorithm in which each instance of the algorithm involves t-error correction.
Resumo:
We consider the problem of characterizing the minimum average delay, or equivalently the minimum average queue length, of message symbols randomly arriving to the transmitter queue of a point-to-point link which dynamically selects a (n, k) block code from a given collection. The system is modeled by a discrete time queue with an IID batch arrival process and batch service. We obtain a lower bound on the minimum average queue length, which is the optimal value for a linear program, using only the mean (λ) and variance (σ2) of the batch arrivals. For a finite collection of (n, k) codes the minimum achievable average queue length is shown to be Θ(1/ε) as ε ↓ 0 where ε is the difference between the maximum code rate and λ. We obtain a sufficient condition for code rate selection policies to achieve this optimal growth rate. A simple family of policies that use only one block code each as well as two other heuristic policies are shown to be weakly optimal in the sense of achieving the 1/ε growth rate. An appropriate selection from the family of policies that use only one block code each is also shown to achieve the optimal coefficient σ2/2 of the 1/ε growth rate. We compare the performance of the heuristic policies with the minimum achievable average queue length and the lower bound numerically. For a countable collection of (n, k) codes, the optimal average queue length is shown to be Ω(1/ε). We illustrate the selectivity among policies of the growth rate optimality criterion for both finite and countable collections of (n, k) block codes.
Resumo:
Homogenization and error analysis of an optimal interior control problem in the framework of Stokes' system, on a domain with rapidly oscillating boundary, are the subject matters of this article. We consider a three dimensional domain constituted of a parallelepiped with a large number of rectangular cylinders at the top of it. An interior control is applied in a proper subdomain of the parallelepiped, away from the oscillating volume. We consider two types of functionals, namely a functional involving the L-2-norm of the state variable and another one involving its H-1-norm. The asymptotic analysis of optimality systems for both cases, when the cross sectional area of the rectangular cylinders tends to zero, is done here. Our major contribution is to derive error estimates for the state, the co-state and the associated pressures, in appropriate functional spaces.
Resumo:
This paper presents a novel, soft computing based solution to a complex optimal control or dynamic optimization problem that requires the solution to be available in real-time. The complexities in this problem of optimal guidance of interceptors launched with high initial heading errors include the more involved physics of a three dimensional missile-target engagement, and those posed by the assumption of a realistic dynamic model such as time-varying missile speed, thrust, drag and mass, besides gravity, and upper bound on the lateral acceleration. The classic, pure proportional navigation law is augmented with a polynomial function of the heading error, and the values of the coefficients of the polynomial are determined using differential evolution (DE). The performance of the proposed DE enhanced guidance law is compared against the existing conventional laws in the literature, on the criteria of time and energy optimality, peak lateral acceleration demanded, terminal speed and robustness to unanticipated target maneuvers, to illustrate the superiority of the proposed law. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
To combine the advantages of both stability and optimality-based designs, a single network adaptive critic (SNAC) aided nonlinear dynamic inversion approach is presented in this paper. Here, the gains of a dynamic inversion controller are selected in such a way that the resulting controller behaves very close to a pre-synthesized SNAC controller in the output regulation sense. Because SNAC is based on optimal control theory, it makes the dynamic inversion controller operate nearly optimal. More important, it retains the two major benefits of dynamic inversion, namely (i) a closed-form expression of the controller and (ii) easy scalability to command tracking applications without knowing the reference commands a priori. An extended architecture is also presented in this paper that adapts online to system modeling and inversion errors, as well as reduced control effectiveness, thereby leading to enhanced robustness. The strengths of this hybrid method of applying SNAC to optimize an nonlinear dynamic inversion controller is demonstrated by considering a benchmark problem in robotics, that is, a two-link robotic manipulator system. Copyright (C) 2013 John Wiley & Sons, Ltd.
Resumo:
We apply the objective method of Aldous to the problem of finding the minimum-cost edge cover of the complete graph with random independent and identically distributed edge costs. The limit, as the number of vertices goes to infinity, of the expected minimum cost for this problem is known via a combinatorial approach of Hessler and Wastlund. We provide a proof of this result using the machinery of the objective method and local weak convergence, which was used to prove the (2) limit of the random assignment problem. A proof via the objective method is useful because it provides us with more information on the nature of the edge's incident on a typical root in the minimum-cost edge cover. We further show that a belief propagation algorithm converges asymptotically to the optimal solution. This can be applied in a computational linguistics problem of semantic projection. The belief propagation algorithm yields a near optimal solution with lesser complexity than the known best algorithms designed for optimality in worst-case settings.
Resumo:
For a general tripartite system in some pure state, an observer possessing any two parts will see them in a mixed state. By the consequence of Hughston-Jozsa-Wootters theorem, each basis set of local measurement on the third part will correspond to a particular decomposition of the bipartite mixed state into a weighted sum of pure states. It is possible to associate an average bipartite entanglement ((S) over bar) with each of these decompositions. The maximum value of (S) over bar is called the entanglement of assistance (E-A) while the minimum value is called the entanglement of formation (E-F). An appropriate choice of the basis set of local measurement will correspond to an optimal value of (S) over bar; we find here a generic optimality condition for the choice of the basis set. In the present context, we analyze the tripartite states W and GHZ and show how they are fundamentally different. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In a system with energy harvesting (EH) nodes, the design focus shifts from minimizing energy consumption by infrequently transmitting less information to making the best use of available energy to efficiently deliver data while adhering to the fundamental energy neutrality constraint. We address the problem of maximizing the throughput of a system consisting of rate-adaptive EH nodes that transmit to a destination. Unlike related literature, we focus on the practically important discrete-rate adaptation model. First, for a single EH node, we propose a discrete-rate adaptation rule and prove its optimality for a general class of stationary and ergodic EH and fading processes. We then study a general system with multiple EH nodes in which one is opportunistically selected to transmit. We first derive a novel and throughput-optimal joint selection and rate adaptation rule (TOJSRA) when the nodes are subject to a weaker average power constraint. We then propose a novel rule for a multi-EH node system that is based on TOJSRA, and we prove its optimality for stationary and ergodic EH and fading processes. We also model the various energy overheads of the EH nodes and characterize their effect on the adaptation policy and the system throughput.
Resumo:
This paper derives outer bounds on the sum rate of the K-user MIMO Gaussian interference channel (GIC). Three outer bounds are derived, under different assumptions of cooperation and providing side information to receivers. The novelty in the derivation lies in the careful selection of side information, which results in the cancellation of the negative differential entropy terms containing signal components, leading to a tractable outer bound. The overall outer bound is obtained by taking the minimum of the three outer bounds. The derived bounds are simplified for the MIMO Gaussian symmetric IC to obtain outer bounds on the generalized degrees of freedom (GDOF). The relative performance of the bounds yields insight into the performance limits of multiuser MIMO GICs and the relative merits of different schemes for interference management. These insights are confirmed by establishing the optimality of the bounds in specific cases using an inner bound on the GDOF derived by the authors in a previous work. It is also shown that many of the existing results on the GDOF of the GIC can be obtained as special cases of the bounds, e. g., by setting K = 2 or the number of antennas at each user to 1.
Resumo:
This paper considers the problem of receive antenna selection (AS) in a multiple-antenna communication system having a single radio-frequency (RF) chain. The AS decisions are based on noisy channel estimates obtained using known pilot symbols embedded in the data packets. The goal here is to minimize the average packet error rate (PER) by exploiting the known temporal correlation of the channel. As the underlying channels are only partially observed using the pilot symbols, the problem of AS for PER minimization is cast into a partially observable Markov decision process (POMDP) framework. Under mild assumptions, the optimality of a myopic policy is established for the two-state channel case. Moreover, two heuristic AS schemes are proposed based on a weighted combination of the estimated channel states on the different antennas. These schemes utilize the continuous valued received pilot symbols to make the AS decisions, and are shown to offer performance comparable to the POMDP approach, which requires one to quantize the channel and observations to a finite set of states. The performance improvement offered by the POMDP solution and the proposed heuristic solutions relative to existing AS training-based approaches is illustrated using Monte Carlo simulations.
Resumo:
In this paper, the Gaussian many-to-one X channel (XC), which is a special case of general multiuser XC, is studied. In the Gaussian many-to-one XC, communication links exist between all transmitters and one of the receivers, along with a communication link between each transmitter and its corresponding receiver. As per the XC assumption, transmission of messages is allowed on all the links of the channel. This communication model is different from the corresponding manyto- one interference channel (IC). Transmission strategies, which involve using Gaussian codebooks and treating interference from a subset of transmitters as noise, are formulated for the above channel. Sum-rate is used as the criterion of optimality for evaluating the strategies. Initially, a 3 x 3 many-to-one XC is considered and three transmission strategies are analyzed. The first two strategies are shown to achieve sum-rate capacity under certain channel conditions. For the third strategy, a sum-rate outer bound is derived and the gap between the outer bound and the achieved rate is characterized. These results are later extended to the K x K case. Next, a region in which the many-to-one XC can be operated as a many-to-one IC without the loss of sum-rate is identified. Furthermore, in the above region, it is shown that using Gaussian codebooks and treating interference as noise achieve a rate point that is within K/2 -1 bits from the sum-rate capacity. Subsequently, some implications of the above results to the Gaussian many-to-one IC are discussed. Transmission strategies for the many-to-one IC are formulated, and channel conditions under which the strategies achieve sum-rate capacity are obtained. A region where the sum-rate capacity can be characterized to within K/2 -1 bits is also identified. Finally, the regions where the derived channel conditions are satisfied for each strategy are illustrated for a 3 x 3 many-to-one XC and the corresponding many-to-one IC.