180 resultados para nonlocal boundary conditions
Resumo:
The plane problem of load transfer from an elastic interference or clearance fit pin to a large elastic sheet with a perfectly smooth interface is solved. As the load on the pin is monotonically increased, the pin-hole interface is in partial contact above certain critical load in interference fit and throughout the loading range in clearance fit.Such situations result in mixed boundary-value problems with moving boundaries and the arc of contact varies nonlinearly with applied load. These problems are analyzed by an inverse technique in which the arcs of contact/separation are prescribed and the causative loads are evaluated. A direct method of analysis is adopted using biharmonic polar trigonometric stress functions and a simple collocation method for satisfying the boundary conditions. A unified analytical formulation is achieved for interference and clearance fits. The solutions for the linear problem of push fits are inherent in the unified analysis. Numerical results highlighting the effects of pin and sheet elasticity parameters are presented.
Resumo:
We study small vibrations of cantilever beams contacting a rigid surface. We study two cases: the first is a beam that sags onto the ground due to gravity, and the second is a beam that sticks to the ground through reversible adhesion. In both cases, the noncontacting length varies dynamically. We first obtain the governing equations and boundary conditions, including a transversality condition involving an end moment, using Hamilton's principle. Rescaling the variable length to a constant value, we obtain partial differential equations with time varying coefficients, which, upon linearization, give the natural frequencies of vibration. The natural frequencies for the first case (gravity without adhesion) match that of a clamped-clamped beam of the same nominal length; frequencies for the second case, however, show no such match. We develop simple, if atypical, single degree of freedom approximations for the first modes of these two systems, which provide insights into the role of the static deflection profile, as well as the end moment condition, in determining the first natural frequencies of these systems. Finally, we consider small transverse sinusoidal forcing of the first case and find that the governing equation contains both parametric and external forcing terms. For forcing at resonance, w find that either the internal or the external forcing may dominate.
Resumo:
Near the boundaries of shells, thin shell theories cannot always provide a satisfactory description of the kinematic situation. This imposes severe limitations on simulating the boundary conditions in theoretical shell models. Here an attempt is made to overcome the above limitation. Three-dimensional theory of elasticity is used near boundaries, while thin shell theory covers the major part of the shell away from the boundaries. Both regions are connected by means of an “interphase element.” This method is used to study typical static stress and natural vibration problems
Resumo:
An analytical-numerical procedure for obtaining stress intensity factor solutions for an arbitrarily oriented crack in a long, thin circular cylindrical shell is presented. The method of analysis involves obtaining a series solution to the governing shell equation in terms of Mathieu and modified Mathieu functions by the method of separation of variables and satisfying the crack surface boundary conditions numerically using collocation. The solution is then transformed from elliptic coordinates to polar coordinates with crack tip as the origin through a Taylor series expansion and membrane and bending stress intensity factors are computed. Numerical results are presented and discussed for the pressure loading case.
Resumo:
Free vibration analysis is carried out to study the vibration characteristics of composite laminates using the modified shear deformation, layered, composite plate theory and employing the Rayleigh-Ritz energy approach. The analysis is presented in a unified form so as to incorporate all different combinations of laminate boundary conditions and with full coverage with regard to the various design parameters of a laminated plate. A parametric study is made using a beam characteristic function as the admissible function for the numerical calculations. The numerical results presented here are for an example case of fully clamped boundary conditions and are compared with previously published results. The effect of parameters, such as the aspect ratio of plates, ply-angle, number of layers and also the thickness ratios of plies in laminates on the frequencies of the laminate, is systematically studied. It is found that for anti-symmetric angle-ply or cross-ply laminates unique numerical values of the thickness ratios exist which improve the vibration characteristics of such laminates. Numerical values of the non-dimensional frequencies and nodal patterns, using the thickness ratio distribution of the plies, are then obtained for clamped laminates, fabricated out of various commonly used composite materials, and are presented in the form of the design curves.
Resumo:
In this paper, an attempt is made to obtain the free vibration response of hybrid, laminated rectangular and skew plates. The Galerkin technique is employed to obtain an approximate solution of the governing differential equations. It is found that this technique is well suited for the study of such problems. Results are presented in a graphical form for plates with one pair of opposite edges simply supported and the other two edges clamped. The method is quite general and can be applied to any other boundary conditions.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
The purpose of this paper is to develop a sufficiently accurate analysis, which is much simpler than exact three-dimensional analysis, for statics and dynamics of composite laminates. The governing differential equations and boundary conditions are derived by following a variational approach. The displacements are assumed piecewise linear across the thickness and the effects of transverse shear deformations and rotary inertia are included. A procedure for obtaining the general solution of the above governing differential equations in the form of hyperbolic-trigonometric series is given. The accuracy of the present theory is assessed by obtaining results for free vibrations and flexure of simply supported rectangular laminates and comparing them with results from exact three-dimensional analysis.
Resumo:
Input-output stability of linear-distributed parameter systems of arbitrary order and type in the presence of a distributed controller is analyzed by extending the concept of dissipativeness, with certain modifications, to such systems. The approach is applicable to systems with homogeneous or homogenizable boundary conditions. It also helps in generating a Liapunov functional to assess asymptotic stability of the system.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
The decay of sound in a rectangular room is analyzed for various boundary conditions on one of its walls. It is shown that the decay of the sound-intensity level is in general nonlinear. But for specific areas and impedances of the material it is possible to obtain a linear initial decay. It is also shown that the coefficients derived from the initial decay rates neither correspond to the predictions of Sabine's or Eyring's geometrical theories nor to the normal coefficients of Morse's wave theory. The dependence of the coefficients on the area of the material is discussed. The influence of the real and the imaginary parts of the specific acoustic impedance of the material on the coefficients is also discussed. Finally, the existence of a linear initial decay corresponding to the decay of a diffuse field in the case of a highly absorbing material partially covering a wall is explained on the basis of modal coupling.
Resumo:
The classical Rayleigh-Ritz method in conjunction with suitable co-ordinate transformations is found to be effective for accurate estimation of natural frequencies of circumferentially truncated circular sector plates with simply supported straight edges. Numerical results are obtained for all the nine combinations of clamped, simply supported and free boundary conditions at the circular edges and presented in the form of graphs. The analysis confirms an earlier observation that the plate behaves like a long rectangular strip as the width of the plate in the radial direction becomes small.
Resumo:
The decay of sound in a rectangular room is analyzed for various boundary conditions on one of its walls. It is shown that the decay of the sound-intensity level is in general nonlinear. But for specific areas and impedances of the material it is possible to obtain a linear initial decay. It is also shown that the coefficients derived from the initial decay rates neither correspond to the predictions of Sabine's or Eyring's geometrical theories nor to the normal coefficients of Morse's wave theory. The dependence of the coefficients on the area of the material is discussed. The influence of the real and the imaginary parts of the specific acoustic impedance of the material on the coefficients is also discussed. Finally, the existence of a linear initial decay corresponding to the decay of a diffuse field in the case of a highly absorbing material partially covering a wall is explained on the basis of modal coupling.
Resumo:
A systematic derivation of the approximate coupled amplitude equations governing the propagation of a quasi-monochromatic Rayleigh surface wave on an isotropic solid is presented, starting from the non-linear governing differential equations and the non-linear free-surface boundary conditions, using the method of mulitple scales. An explicit solution of these equations for a signalling problem is obtained in terms of hyperbolic functions. In the case of monochromatic excitation, it is shown that the second harmonic amplitude grows initially at the expense of the fundamental and that the amplitudes of the fundamental and second harmonic remain bounded for all time.
Resumo:
Vibration problem of generally orthotropic plates with particular attention to plates of skew geometry is studied. The formulation is based on orthotropic plate theory with arbitrary orientation of the principal axes of orthotropy. The boundary conditions considered are combinations of simply supported, clamped, and free-edge conditions. Approximate solution for frequencies and modes is obtained by the Ritz method using products of appropriate beam characteristic functions as admissible functions. The variation of frequencies and modes with orientation of the axes of orthotropy is examined for different skew angles and boundary conditions. Features such as "crossings" and "quasi-degeneracies" of the frequency curves are found to occur with variation of the orientation of the axes of orthotropy for a given geometry of the skew plate. It is also found that for each combination of skew angle and side ratio, a particular orientation of the axes gives the highest value for the fundamental frequency of the plate.