69 resultados para multifocal contact lenses
Resumo:
Anisotropy plays important roles in various biological phenomena such as adhesion of geckos and grasshoppers enabled by the attachment pods having hierarchical structures like thin longitudinal setae connected with threads mimicked by anisotropic films. We study the contact instability of a transversely isotropic thin elastic film when it comes in contact proximity of another surface. In the present study we investigate the contact stability of a thin incompressible transversely isotropic film by performing linear stability analysis. Based on the linear stability analysis, we show that an approaching contactor renders the film unstable. The critical wavelength of the instability is a function of the total film thickness and the ratio of the Young's modulus in the longitudinal direction and the shear modulus in the plane containing the longitudinal axis. We also analyze the stability of a thin gradient film that is elastically inhomogeneous across its thickness. Compared to a homogeneous elastic film, it becomes unstable with a longer wavelength when the film becomes softer in going from the surface to the substrate.
Resumo:
This study presents unambiguous experimental evidence in support of the highly debated ``halogen bond donor'' character of organic fluorine. Two examples of intermolecular Cl center dot center dot center dot F contacts, with F-atom as halogen bond acceptor and donor, have been analyzed by in situ cryocrystallography and theoretical charge density studies.
Resumo:
In order to resolve some missing micromechanistic details regarding contact deformation in nitride multilayer coatings we report here observations from cross-sectional transmission electron microscopy and focused ion beam studies of the Vickers indentations on TiN/TiAlN multilayer films of various total thicknesses as well as bilayer periods. The study of damage induced by contact deformation in a nitride multilayer coating is complemented by stress calculated using an analytical model. Kinked boundaries of sliding columns give rise to cracks which propagate at an angle to the indentation axis under a combination of compressive and shear stresses. It is seen that multilayers provide more distributed columnar sliding, thereby reducing the stress intensity factor for shear cracking, while interfacial dislocations provide a stress relief mechanism by enabling lateral movement of material. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We employ nanoindentation coupled with electrical contact resistance measurements for simultaneous characterization of the electrical and mechanical behaviors of a cellular assembly of carbon nanotubes (CNTs). Experimental results reveal two different responses that correspond to relatively dense and porous regions of the cellular structure. Distinct nonlinear electron transport characteristics are observed, which mainly originate from diffusive conductance in the CNT structure. In the denser region, differential conductance shows asymmetric minima at lower bias, implying that conductivity mainly results from bulk tunneling. However, the porous regions show insignificant differential conduction as opposed to the denser region.
Resumo:
Effects of dynamic contact angle models on the flow dynamics of an impinging droplet in sharp interface simulations are presented in this article. In the considered finite element scheme, the free surface is tracked using the arbitrary Lagrangian-Eulerian approach. The contact angle is incorporated into the model by replacing the curvature with the Laplace-Beltrami operator and integration by parts. Further, the Navier-slip with friction boundary condition is used to avoid stress singularities at the contact line. Our study demonstrates that the contact angle models have almost no influence on the flow dynamics of the non-wetting droplets. In computations of the wetting and partially wetting droplets, different contact angle models induce different flow dynamics, especially during recoiling. It is shown that a large value for the slip number has to be used in computations of the wetting and partially wetting droplets in order to reduce the effects of the contact angle models. Among all models, the equilibrium model is simple and easy to implement. Further, the equilibrium model also incorporates the contact angle hysteresis. Thus, the equilibrium contact angle model is preferred in sharp interface numerical schemes.
Resumo:
Soot generated from the combustion process in diesel engines affect engine tribology. In this paper, two diesel soot samples; from engine exhaust and oil filter are suspended in hexadecane oil and the suspension is used to lubricate a steel ball on steel flat sliding contact at a contact pressure of 1.3 GPa. The friction and wear of the steel flat are recorded. The data are compared with those recorded when the soot is generated by burning ethylene gas. The rationale for the comparatively poor tribology of diesel soot is explored by quantifying the size and shape of primary particles and agglomerates, hardness of single primary soot particles, the crystallinity and surface and near surface chemistry of soot and interparticle adhesion.
Resumo:
The nanoindentation technique can be employed in shape memory alloys (SMAs) to discern the transformation temperatures as well as to characterize their mechanical behavior. In this paper, we use it with simultaneous measurements of the mechanical and the electrical contact resistances (ECR) at room temperature to probe two SMAs: austenite (RTA) and martensite (RTM). Two different types of indenter tips - Berkovich and spherical - are employed to examine the SMAs' indentation responses as a function of the representative strain, epsilon(R). In Berkovich indentation, because of the sharp nature of the tip, and in consequence the high levels of strain imposed, discerning the two SMAs on the basis of the indentation response alone is difficult. In the case of the spherical tip, epsilon(R) is systematically varied and its effect on the depth recovery ratio, eta(d), is examined. Results indicate that RTA has higher eta(d) than RTM, but the difference decreases with increasing epsilon(R) such that eta(d) values for both the alloys would be similar in the fully plastic regime. The experimental trends in eta(d) vs. epsilon(R) for both the alloys could be described well with a eta(d) proportional to (epsilon(R))(-1) type equation, which is developed on the basis of a phenomenological model. This fit, in turn, directs us to the maximum epsilon(R), below which plasticity underneath the indenter would not mask the differences in the two SMAs. It was demonstrated that the ECR measurements complement the mechanical measurements in demarcating the reverse transformation from martensite to austenite during unloading of RTA, wherein a marked increase in the voltage was noted. A correlation between recovery due to reverse transformation during unloading and increase in voltage (and hence the electrical resistance) was found. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A Frictionally constrained condition implies dependence of friction force on tangential displacement amplitude. The condition may occur due to chemical, physical, and/or mechanical interaction between the contacting surfaces. The condition, sometimes also referred to as the presliding condition or partial slip condition, is characterized under fretting. Under such conditions, various experimental studies indicate the existence of two distinguishable regions, that is, stick region and slip region. In the present study, frictionally constrained conditions are identified and the evolutions of stick-slip regions are investigated in detail. Investigations have been performed on self-mated stainless steel and chromium carbide coated surfaces mated against stainless steel, under both vacuum and ambient conditions. Contact conditions prevailing at the contact interface were identified based on the mechanical responses and were correlated with the surface damage observed. Surface degradation has been observed in the form of microcracks and material transfer. Detailed numerical analysis has also been performed in order to understand the energy dissipation and the damage mode involved in the surface or subsurface damage. It has been observed that under frictionally constrained conditions, the occurrence of annular slip features are mainly due to the junction growth, resulting from elastic-plastic deformation at the contact interface. Ratcheting has been observed as the governing damage mode under cyclic tangential loading condition.
Resumo:
A systematic study was done to understand the influence of volume fractions and bilayer spacings for metal/nitride multilayer coating using finite element method (FEM). An axisymmetric model was chosen to model the real situation by incorporating metal and substrate plasticity. Combinations of volume fractions and bilayer spacings were chosen for FEM analysis consistent with experimental results. The model was able to predict trends in cracking with respect to layer spacing and volume fraction. Metal layer plasticity is seen to greatly influence the stress field inside nitride. It is seen that the thicker metal induces higher tensile stresses inside nitride and hence leads to lower cracking loads. Thin metal layers < 10 nm were seen to have curved interfaces, and hence, the deformation mode was interfacial delamination in combination with edge cracking. There is an optimum seen with respect to volume fraction similar to 13% and metal layer thickness similar to 30 nm, which give maximum crack resistance.
Resumo:
Isochromatic patterns in the vicinity of frictional contacts furnish vital clues for characterizing friction. Though friction effects are evident in a diametrally loaded circular disk, three-point loading provides better results towards highlighting friction. In this paper, a new method of characterizing friction at loading contacts using photoelastic isochromatics patterns is presented. Location of isotropic points (IPs) formed in three-point and four-point loadings of circular disk is used as a main tool to quantify the friction component using theoretical analysis. Bifurcation of isochromatic fringe loops near the distributed loads is explained by the presence of anti-symmetric Hertzian shear traction in addition to Hertzian normal traction. The classical solution by Flamant for point load at the edge of half plane is used to derive stresses in circular disk for all required loading configurations. A semicircualr ring under three-point loading is examined using photoelasticity to understand the isochromatics pattern theoretically by considering normal and shear traction components at loaded regions.
Resumo:
The rheology of a poly(alpha-olefin) base oil (PAO) in a sliding point contact has been investigated by total internal reflection (TIR) Raman spectroscopy. TIR Raman has the sensitivity to analyse nanometer-thick lubricant films in a tribological contact. The Raman signal generated from the sliding contact was used to determine the lubricant film thickness. The experimentally obtained film thicknesses were compared with theoretical calculations and a transition from Newtonian to non-Newtonian behaviour was observed at high shear rates. The Raman spectra showed no significant changes in the conformation of the PAO chains under the applied conditions of pressure and shear, but the polarisation dependence of the spectra revealed a preferred orientation of the hydrocarbon side chains in the shear-thinned region. Monolayers formed by a boundary lubricant, arachidic acid, dissolved in the PAO could be detected on the surfaces in the elastohydrodynamic regime.
Resumo:
Permanent plastic deformation induced by mechanical contacts affects the shape recovery of shape memory alloys. To understand the shape recovery of NiTiCu thin films subjected to local contact stresses, systematic investigations are carried out by inducing varying levels of contact stresses using nanoindentation. The resulting indents are located precisely for imaging using a predetermined array consisting of different sized indents. Morphology and topography of these indents before and after shape recovery are characterized using Scanning Electron Microscope and Atomic Force Microscope quantitatively. Shape recovery is found to be dependent on the contact stresses at the low loads while the recovery ratio remains constant at 0.13 for higher loads. Shape recovery is found to occur mainly in depth direction of the indent, while far field residual stresses play very little role in the recovery. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this study, we combine available high resolution structural information on eukaryotic ribosomes with low resolution cryo-EM data on the Hepatitis C Viral RNA (IRES) human ribosome complex. Aided further by the prediction of RNA-protein interactions and restrained docking studies, we gain insights on their interaction at the residue level. We identified the components involved at the major and minor contact regions, and propose that there are energetically favorable local interactions between 40S ribosomal proteins and IRES domains. Domain II of the IRES interacts with ribosomal proteins S5 and S25 while the pseudoknot and the downstream domain IV region bind to ribosomal proteins S26, S28 and S5. We also provide support using UV cross-linking studies to validate our proposition of interaction between the S5 and IRES domains II and IV. We found that domain IIIe makes contact with the ribosomal protein S3a (S1e). Our model also suggests that the ribosomal protein S27 interacts with domain IIIc while S7 has a weak contact with a single base RNA bulge between junction IIIabc and IIId. The interacting residues are highly conserved among mammalian homologs while IRES RNA bases involved in contact do not show strict conservation. IRES RNA binding sites for S25 and S3a show the best conservation among related viral IRESs. The new contacts identified between ribosomal proteins and RNA are consistent with previous independent studies on RNA-binding properties of ribosomal proteins reported in literature, though information at the residue level is not available in previous studies.