92 resultados para motivational climate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concern over changes in global climate has increased in recent years with improvement in understanding of atmospheric dynamics and growth in evidence of climate link to long‐term variability in hydrologic records. Climate impact studies rely on climate change information at fine spatial resolution. Towards this, the past decade has witnessed significant progress in development of downscaling models to cascade the climate information provided by General Circulation Models (GCMs) at coarse spatial resolution to the scale relevant for hydrologic studies. While a plethora of downscaling models have been applied successfully to mid‐latitude regions, a few studies are available on tropical regions where the atmosphere is known to have more complex behavior. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling to interpret climate change signals provided by GCMs over tropical regions of India. Climate variables affecting spatio‐temporal variation of precipitation at each meteorological sub‐division of India are identified. Following this, cluster analysis is applied on climate data to identify the wet and dry seasons in each year. The data pertaining to climate variables and precipitation of each meteorological sub‐division is then used to develop SVM based downscaling model for each season. Subsequently, the SVM based downscaling model is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to assess the impact of climate change on hydrological inputs to the meteorological sub‐divisions. The results obtained from the SVM downscaling model are then analyzed to assess the impact of climate change on precipitation over India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we analyzed climate and crop yields data from Indian cardamom hills for the period 1978-2007 to investigate whether there were significant changes in weather elements, and if such changes have had significant impact on the production of spices and plantation crops. Spatial and temporal variations in air temperatures (maximum and minimum), rainfall and relative humidity are evident across stations. The mean air temperature increased significantly during the last 30 years; the greatest increase and the largest significant upward trend was observed in the daily temperature. The highest increase in minimum temperature was registered for June (0.37A degrees C/18 years) at the Myladumpara station. December and January showed greater warming across the stations. Rainfall during the main monsoon months (June-September) showed a downward trend. Relative humidity showed increasing and decreasing trends, respectively, at the cardamom and tea growing tracts. The warming trend coupled with frequent wet and dry spells during the summer is likely to have a favorable effect on insect pests and disease causing organisms thereby pesticide consumption can go up both during excess rainfall and drought years. The incidence of many minor pest insects and disease pathogens has increased in the recent years of our study along with warming. Significant and slight increases in the yield of small cardamom (Elettaria cardamomum M.) and coffee (Coffea arabica), respectively, were noticed in the recent years.; however the improvement of yield in tea (Thea sinensis) and black pepper (Piper nigrum L.) has not been seen in our analysis.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian region. I present a review of the current state of knowledge of aerosol chemistry in India and propose future directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Black carbon aerosols absorb solar radiation and decrease planetary albedo, and thus can contribute to climate warming. In this paper, the dependence of equilibrium climate response on the altitude of black carbon is explored using an atmospheric general circulation model coupled to a mixed layer ocean model. The simulations model aerosol direct and semi-direct effects, but not indirect effects. Aerosol concentrations are prescribed and not interactive. It is shown that climate response of black carbon is highly dependent on the altitude of the aerosol. As the altitude of black carbon increases, surface temperatures decrease; black carbon near the surface causes surface warming, whereas black carbon near the tropopause and in the stratosphere causes surface cooling. This cooling occurs despite increasing planetary absorption of sunlight (i.e. decreasing planetary albedo). We find that the trend in surface air temperature response versus the altitude of black carbon is consistent with our calculations of radiative forcing after the troposphere, stratosphere, and land surface have undergone rapid adjustment, calculated as ``regressed'' radiative forcing. The variation in climate response from black carbon at different altitudes occurs largely from different fast climate responses; temperature dependent feedbacks are not statistically distinguishable. Impacts of black carbon at various altitudes on the hydrological cycle are also discussed; black carbon in the lowest atmospheric layer increases precipitation despite reductions in solar radiation reaching the surface, whereas black carbon at higher altitudes decreases precipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modeling framework is presented in this paper, integrating hydrologic scenarios projected from a General Circulation Model (GCM) with a water quality simulation model to quantify the future expected risk. Statistical downscaling with a Canonical Correlation Analysis (CCA) is carried out to develop the future scenarios of hydro-climate variables starting with simulations provided by a GCM. A Multiple Logistic Regression (MLR) is used to quantify the risk of Low Water Quality (LWQ) corresponding to a threshold quality level, by considering the streamflow and water temperature as explanatory variables. An Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) presented in an earlier study is then used to develop adaptive policies to address the projected water quality risks. Application of the proposed methodology is demonstrated with the case study of Tunga-Bhadra river in India. The results showed that the projected changes in the hydro-climate variables tend to diminish DO levels, thus increasing the future risk levels of LWQ. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies show that fast climate response on time scales of less than a month can have important implications for long-term climate change. In this study, we investigate climate response on the time scale of days to weeks to a step-function quadrupling of atmospheric CO2 and contrast this with the response to a 4% increase in solar irradiance. Our simulations show that significant climate effects occur within days of a stepwise increase in both atmospheric CO2 content and solar irradiance. Over ocean, increased atmospheric CO2 warms the lower troposphere more than the surface, increasing atmospheric stability, moistening the boundary layer, and suppressing evaporation and precipitation. In contrast, over ocean, increased solar irradiance warms the lower troposphere to a much lesser extent, causing a much smaller change in evaporation and precipitation. Over land, both increased CO2 and increased solar irradiance cause rapid surface warming that tends to increase both evaporation and precipitation. However, the physiological effect of increased atmospheric CO2 on plant stomata reduces plant transpiration, drying the boundary layer and decreasing precipitation. This effect does not occur with increased solar irradiance. Therefore, differences in climatic effects from CO2 versus solar forcing are manifested within days after the forcing is imposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detecting and quantifying the presence of human-induced climate change in regional hydrology is important for studying the impacts of such changes on the water resources systems as well as for reliable future projections and policy making for adaptation. In this article a formal fingerprint-based detection and attribution analysis has been attempted to study the changes in the observed monsoon precipitation and streamflow in the rain-fed Mahanadi River Basin in India, considering the variability across different climate models. This is achieved through the use of observations, several climate model runs, a principal component analysis and regression based statistical downscaling technique, and a Genetic Programming based rainfall-runoff model. It is found that the decreases in observed hydrological variables across the second half of the 20th century lie outside the range that is expected from natural internal variability of climate alone at 95% statistical confidence level, for most of the climate models considered. For several climate models, such changes are consistent with those expected from anthropogenic emissions of greenhouse gases. However, unequivocal attribution to human-induced climate change cannot be claimed across all the climate models and uncertainties in our detection procedure, arising out of various sources including the use of models, cannot be ruled out. Changes in solar irradiance and volcanic activities are considered as other plausible natural external causes of climate change. Time evolution of the anthropogenic climate change ``signal'' in the hydrological observations, above the natural internal climate variability ``noise'' shows that the detection of the signal is achieved earlier in streamflow as compared to precipitation for most of the climate models, suggesting larger impacts of human-induced climate change on streamflow than precipitation at the river basin scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate projections for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) are made using the newly developed representative concentration pathways (RCPs) under the Coupled Model Inter-comparison Project 5 (CMIP5). This article provides multi-model and multi-scenario temperature and precipitation projections for India for the period 1860-2099 based on the new climate data. We find that CMIP5 ensemble mean climate is closer to observed climate than any individual model. The key findings of this study are: (i) under the business-as-usual (between RCP6.0 and RCP8.5) scenario, mean warming in India is likely to be in the range 1.7-2 degrees C by 2030s and 3.3-4.8 degrees C by 2080s relative to pre-industrial times; (ii) all-India precipitation under the business-as-usual scenario is projected to increase from 4% to 5% by 2030s and from 6% to 14% towards the end of the century (2080s) compared to the 1961-1990 baseline; (iii) while precipitation projections are generally less reliable than temperature projections, model agreement in precipitation projections increases from RCP2.6 to RCP8.5, and from short-to long-term projections, indicating that long-term precipitation projections are generally more robust than their short-term counterparts and (iv) there is a consistent positive trend in frequency of extreme precipitation days (e.g. > 40 mm/day) for decades 2060s and beyond. These new climate projections should be used in future assessment of impact of climate change and adaptation planning. There is need to consider not just the mean climate projections, but also the more important extreme projections in impact studies and as well in adaptation planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the authors have investigated the likely future changes in the summer monsoon over the Western Ghats (WG) orographic region of India in response to global warming, using time-slice simulations of an ultra high-resolution global climate model and climate datasets of recent past. The model with approximately 20-km mesh horizontal resolution resolves orographic features on finer spatial scales leading to a quasi-realistic simulation of the spatial distribution of the present-day summer monsoon rainfall over India and trends in monsoon rainfall over the west coast of India. As a result, a higher degree of confidence appears to emerge in many aspects of the 20-km model simulation, and therefore, we can have better confidence in the validity of the model prediction of future changes in the climate over WG mountains. Our analysis suggests that the summer mean rainfall and the vertical velocities over the orographic regions of Western Ghats have significantly weakened during the recent past and the model simulates these features realistically in the present-day climate simulation. Under future climate scenario, by the end of the twenty-first century, the model projects reduced orographic precipitation over the narrow Western Ghats south of 16A degrees N that is found to be associated with drastic reduction in the southwesterly winds and moisture transport into the region, weakening of the summer mean meridional circulation and diminished vertical velocities. We show that this is due to larger upper tropospheric warming relative to the surface and lower levels, which decreases the lapse rate causing an increase in vertical moist static stability (which in turn inhibits vertical ascent) in response to global warming. Increased stability that weakens vertical velocities leads to reduction in large-scale precipitation which is found to be the major contributor to summer mean rainfall over WG orographic region. This is further corroborated by a significant decrease in the frequency of moderate-to-heavy rainfall days over WG which is a typical manifestation of the decrease in large-scale precipitation over this region. Thus, the drastic reduction of vertical ascent and weakening of circulation due to `upper tropospheric warming effect' predominates over the `moisture build-up effect' in reducing the rainfall over this narrow orographic region. This analysis illustrates that monsoon rainfall over mountainous regions is strongly controlled by processes and parameterized physics which need to be resolved with adequately high resolution for accurate assessment of local and regional-scale climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon footprint (CF) refers to the total amount of carbon dioxide and its equivalents emitted due to various anthropogenic activities. Carbon emission and sequestration inventories have been reviewed sector-wise for all federal states in India to identify the sectors and regions responsible for carbon imbalances. This would help in implementing appropriate climate change mitigation and management strategies at disaggregated levels. Major sectors of carbon emissions in India are through electricity generation, transport, domestic energy consumption, industries and agriculture. A majority of carbon storage occurs in forest biomass and soil. This paper focuses on the statewise carbon emissions (CO2. CO and CH4), using region specific emission factors and statewise carbon sequestration capacity. The estimate shows that CO2, CO and CH4 emissions from India are 965.9, 22.5 and 16.9 Tg per year, respectively. Electricity generation contributes 35.5% of total CO2 emission, which is followed by the contribution from transport. Vehicular transport exclusively contributes 25.5% of total emission. The analysis shows that Maharashtra emits higher CO2, followed by Andhra Pradesh, Uttar Pradesh, Gujarat, Tamil Nadu and West Bengal. The carbon status, which is the ratio of annual carbon storage against carbon emission, for each federal state is computed. This shows that small states and union territories (UT) like Arunachal Pradesh, Mizoram and Andaman and Nicobar Islands, where carbon sequestration is higher due to good vegetation cover, have carbon status > 1. Annually, 7.35% of total carbon emissions get stored either in forest biomass or soil, out of which 34% is in Arunachal Pradesh, Madhya Pradesh, Chhattisgarh and Orissa. (C) 2012 Elsevier Ltd. All rights reserved.