202 resultados para models.
Resumo:
The momentum balance of the linear-combination integral model for the transition zone is investigated for constant pressure flows. The imbalance is found to be small enough to be negligible for all practical purposes. [S0889-504X(00)00703-0].
Resumo:
This paper reviews computational reliability, computer algebra, stochastic stability and rotating frame turbulence (RFT) in the context of predicting the blade inplane mode stability, a mode which is at best weakly damped. Computational reliability can be built into routine Floquet analysis involving trim analysis and eigenanalysis, and a highly portable special purpose processor restricted to rotorcraft dynamics analysis is found to be more economical than a multipurpose processor. While the RFT effects are dominant in turbulence modeling, the finding that turbulence stabilizes the inplane mode is based on the assumption that turbulence is white noise.
Resumo:
A conceptually unifying and flexible approach to the ABC and FGH segments of the nortriterpenoid rubrifloradilactone C, each embodying a furo[3,2-b]furanone moiety, from the appropriate Morita-Baylis-Hillman adducts is delineated. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The problem of time variant reliability analysis of existing structures subjected to stationary random dynamic excitations is considered. The study assumes that samples of dynamic response of the structure, under the action of external excitations, have been measured at a set of sparse points on the structure. The utilization of these measurements m in updating reliability models, postulated prior to making any measurements, is considered. This is achieved by using dynamic state estimation methods which combine results from Markov process theory and Bayes' theorem. The uncertainties present in measurements as well as in the postulated model for the structural behaviour are accounted for. The samples of external excitations are taken to emanate from known stochastic models and allowance is made for ability (or lack of it) to measure the applied excitations. The future reliability of the structure is modeled using expected structural response conditioned on all the measurements made. This expected response is shown to have a time varying mean and a random component that can be treated as being weakly stationary. For linear systems, an approximate analytical solution for the problem of reliability model updating is obtained by combining theories of discrete Kalman filter and level crossing statistics. For the case of nonlinear systems, the problem is tackled by combining particle filtering strategies with data based extreme value analysis. In all these studies, the governing stochastic differential equations are discretized using the strong forms of Ito-Taylor's discretization schemes. The possibility of using conditional simulation strategies, when applied external actions are measured, is also considered. The proposed procedures are exemplifiedmby considering the reliability analysis of a few low-dimensional dynamical systems based on synthetically generated measurement data. The performance of the procedures developed is also assessed based on a limited amount of pertinent Monte Carlo simulations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Deterministic models have been widely used to predict water quality in distribution systems, but their calibration requires extensive and accurate data sets for numerous parameters. In this study, alternative data-driven modeling approaches based on artificial neural networks (ANNs) were used to predict temporal variations of two important characteristics of water quality chlorine residual and biomass concentrations. The authors considered three types of ANN algorithms. Of these, the Levenberg-Marquardt algorithm provided the best results in predicting residual chlorine and biomass with error-free and ``noisy'' data. The ANN models developed here can generate water quality scenarios of piped systems in real time to help utilities determine weak points of low chlorine residual and high biomass concentration and select optimum remedial strategies.
Resumo:
Polarizabilities and Hyperpolarizabilities of conjugated organic chains are calculated using correlated model Hamiltonians. While correlations reduce the Polarizabilities and extend the range of linear response, the Hyperpolarizabilities essentially are unaffected by the same. This explains the apparently large Hyperpolarizabilities of conjugated electronic systems.
Resumo:
Randomly diluted quantum boson and spin models in two dimensions combine the physics of classical percolation with the well-known dimensionality dependence of ordering in quantum lattice models. This combination is rather subtle for models that order in two dimensions but have no true order in one dimension, as the percolation cluster near threshold is a fractal of dimension between 1 and 2: two experimentally relevant examples are the O(2) quantum rotor and the Heisenberg antiferromagnet. We study two analytic descriptions of the O(2) quantum rotor near the percolation threshold. First a spin-wave expansion is shown to predict long-ranged order, but there are statistically rare points on the cluster that violate the standard assumptions of spin-wave theory. A real-space renormalization group (RSRG) approach is then used to understand how these rare points modify ordering of the O(2) rotor. A new class of fixed points of the RSRG equations for disordered one-dimensional bosons is identified and shown to support the existence of long-range order on the percolation backbone in two dimensions. These results are relevant to experiments on bosons in optical lattices and superconducting arrays, and also (qualitatively) for the diluted Heisenberg antiferromagnet La-2(Zn,Mg)(x)Cu1-xO4.
Resumo:
A study is presented which is aimed at developing techniques suitable for effective planning and efficient operation of fleets of aircraft typical of the air force of a developing country. An important aspect of fleet management, the problem of resource allocation for achieving prescribed operational effectiveness of the fleet, is considered. For analysis purposes, it is assumed that the planes operate in a single flying-base repair-depot environment. The perennial problem of resource allocation for fleet and facility buildup that faces planners is modeled and solved as an optimal control problem. These models contain two "policy" variables representing investments in aircraft and repair facilities. The feasibility of decentralized control is explored by assuming the two policy variables are under the control of two independent decisionmakers guided by different and not often well coordinated objectives.
Resumo:
A study is presented which is aimed at developing techniques suitable for effective planning and efficient operation of fleets of aircraft typical of the air force of a developing country. An important aspect of fleet management, the problem of resource allocation for achieving prescribed operational effectiveness of the fleet, is considered. For analysis purposes, it is assumed that the planes operate in a single flying-base repair-depot environment. The perennial problem of resource allocation for fleet and facility buildup that faces planners is modeled and solved as an optimal control problem. These models contain two "policy" variables representing investments in aircraft and repair facilities. The feasibility of decentralized control is explored by assuming the two policy variables are under the control of two independent decisionmakers guided by different and not often well coordinated objectives.
Resumo:
The nonminimal coupling of a massive self-interacting scalar field with a gravitational field is studied. Spontaneous symmetry breaking occurs in the open universe even when the sign on the mass term is positive. In contrast to grand unified theories, symmetry breakdown is more important for the early universe and it is restored only in the limit of an infinite expansion. Symmetry breakdown is shown to occur in flat and closed universes when the mass term carries a wrong sign. The model has a naturally defined effective gravitational coupling coefficient which is rendered time-dependent due to the novel symmetry breakdown. It changes sign below a critical value of the cosmic scale factor indicating the onset of a repulsive field. The presence of the mass term severely alters the behaviour of ordinary matter and radiation in the early universe. The total energy density becomes negative in a certain domain. These features make possible a nonsingular cosm
Resumo:
The conformation of (Pro-Gly-Phe)n in trifluoroethanol was investigated using CD, nmr and ir techniques. After making appropriate correction for the contribution of the phenylalanine chromophore to the observed CD spectra of the polytripeptide at several temperatures, it is found that (Pro-Gly-Phe)n can exist in a partially triple-helical conformation in this solvent a t low temperatures. The nmr and ir data support this conclusion. In conjunction with recent theoretical sutdies, our data offer an explanation for the preferential occurrence of the Phe residue in position 2 of the tripeptide sequence Gly-R2-R3, in collagen.
Synthetic peptide models for the redox-active disulfide loop of glutaredoxin. Conformational studies
Resumo:
Two cyclic peptide disulfides Boc-Cys-Pro-X-Cys-NHMe (X = L-Tyr or L-Phe) have been synthesized as models for the 14-membered redox-active disulfide loop of glutaredoxin. 'H NMR studies at 270 MHz in chloroform solutions establish a type I 0-turn conformation for the Pro-X segment in both peptides, stabilized by a 4-1 hydrogen bond between the Cys(1) CO and Cys(4) NH groups. Nuclear Overhauser effects establish that the aromatic ring in the X = Phe peptide is oriented over the central peptide unit. In dimethyl sulfoxide solutions two conformational species are observed in slow exchange on the NMR time scale, for both peptides. These are assigned to type I and type I1 p-turn structures with -Pro-Tyr(Phe)-as the corner residues. The structural assignments are based on correlation of NMR parameters with model 14-membered cyclic cystine peptides with Pro-X spacers. Circular dichroism studies based on the -S-Sn- u* transition suggest a structural change in the disulfide bridge with changing solvent polarity, establishing conformational coupling between the peptide backbone and the disulfide linkage in these systems.
Resumo:
Energy-based direct methods for transient stability analysis are potentially useful both as offline tools for planning purposes as well as for online security assessment. In this paper, a novel structure-preserving energy function (SPEF) is developed using the philosophy of structure-preserving model for the system and detailed generator model including flux decay, transient saliency, automatic voltage regulator (AVR), exciter and damper winding. A simpler and yet general expression for the SPEF is also derived which can simplify the computation of the energy function. The system equations and the energy function are derived using the centre-of-inertia (COI) formulation and the system loads are modelled as arbitrary functions of the respective bus voltages. Application of the proposed SPEF to transient stability evaluation of power systems is illustrated with numerical examples.
Resumo:
The circular dichroism spectra of four 0-turn model peptides, Z-Aib-Pro-Aib-Pro- OMe (l), Piv-Pro-Aib-NHMe (2), Piv-Pro-D-Ala-NHMe (3) and Piv-Pro-Val-NHMe (4) have been examined under a wide range of solvent conditions, using methanol, hexafluoroisopropanol and cyclohexane. Type I and Type I1 0-turns have been observed for peptides 1 and 2 respectively, in the solid state, while the Pro-D-Ala sequence adopts a Type I1 Sturn in a related peptide crystal structure. A class C spectrum is observed for 1 in various solvents, suggesting a variant of a Type I(II1) structure. The Type I1 f3-turn is characterized by a CD spectrum having two positive CD bands at - 230 nm and - 202 nm, a feature observed in Piv-Pro- D-Ala-NHMe in cyclohexane and methanol and for Piv-Pro-Aib-NHMe in methanol. Peptide 2 exhibits solvent dependent CD spectra, which may be rationalized by considering Type 11, I11 and V reverse turn structures. Piv-Pro- Val-NHMe adopts nonaturn structures in polar solvents, but exhibits a class B spectrum in cyclohexane suggesting a population of Type I &turns.