81 resultados para methionine sulfoxide


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirteen host guest compounds of 3,5-dihydroxybenzoic acid (DHBA) have been structurally characterized. Water molecules occupy the peripheries of a hexagonal void, created with DHBA molecules, and act as ``hooks'' to connect the guest molecules with the host-framework via hydrogen bonding. The ``water hook'' is an OH group acting as a donor. Consequently, the guest molecules were chosen so that they contain good hydrogen bond acceptor functionalities. A number of multicomponent hydrates were isolated with stoichiometries (DHBA)(x)(H2O). (guest),. Of these, compounds with the following as guests were obtained as crystals that were good enough for single crystal work: ethyl acetate (EtOAc), diethyl oxalate, dimethyl oxalate, di(n-propyl) oxalate, diethyl malonate, diethyl succinate, chloroacetonitrile, N,N-dimethyl formamide (DMF), acetone, dimethyl sulfoxide (DMSO), 1-propanol, and 2-butanol. From 2-butanol, a hemihydrate, (DHBA)(2)(H2O), was also obtained concomitantly. Further to guest stabilization, water acts as a good mediator of effective crystal packing and also determines the topology of the host framework. En the present series of compounds, the role of water is wide ranging, and it is not easy to classify it specifically as a host or as a guest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Active preparations of tRNA and aminoacyl-tRNA synthetases have been isolated from exponentially growing cells of Mycobacterium smegmatis and Mycobacterium tuberculosis H37Rv. Though the aminoacyl-tRNA synthetases of older cells retain their activity, the tRNAs seem to undergo modification and show poorer activity. The mycobacterial enzyme preparations catalyse homologous and heterologous aminoacylation between tRNA from the two species (M. smegmatis and M. tuberculosis H37Rv) or from Escherichia coli, with equal efficiency; tRNA samples from eukaryotic cells (yeast and rat liver) do not serve as substrates for the mycobacterial synthetases. The analytical separation of the different amino acid specific tRNAs from M. smegmatis resembles the pattern found in other bacteria. Purification of valine- (three species) and methionine-specific tRNA (two species) to 70-80% purity has been accomplished by using column-chromatographic techniques. Of the two species of tRNAMet, one can be formylated in the presence of formyl tetrahydrofolate and the transformylase from mycobacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two cyclic peptide disulfides Boc-Cys-Pro-X-Cys-NHMe (X = L-Tyr or L-Phe) have been synthesized as models for the 14-membered redox-active disulfide loop of glutaredoxin. 'H NMR studies at 270 MHz in chloroform solutions establish a type I 0-turn conformation for the Pro-X segment in both peptides, stabilized by a 4-1 hydrogen bond between the Cys(1) CO and Cys(4) NH groups. Nuclear Overhauser effects establish that the aromatic ring in the X = Phe peptide is oriented over the central peptide unit. In dimethyl sulfoxide solutions two conformational species are observed in slow exchange on the NMR time scale, for both peptides. These are assigned to type I and type I1 p-turn structures with -Pro-Tyr(Phe)-as the corner residues. The structural assignments are based on correlation of NMR parameters with model 14-membered cyclic cystine peptides with Pro-X spacers. Circular dichroism studies based on the -S-Sn- u* transition suggest a structural change in the disulfide bridge with changing solvent polarity, establishing conformational coupling between the peptide backbone and the disulfide linkage in these systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzymes of the family of tRNA synthetases perform their functions with high precision by synchronously recognizing the anticodon region and the aminoacylation region, which are separated by ?70 in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modeled the structure of the complex consisting of Escherichia coli methionyl-tRNA synthetase (MetRS), tRNA, and the activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross-correlations between the residues in MetRS have been evaluated. Furthermore, the network analysis on these simulated structures has been carried out to elucidate the paths of communication between the activation site and the anticodon recognition site. This study has provided the detailed paths of communication, which are consistent with experimental results. Similar studies also have been carried out on the complexes (MetRS + activated methonine) and (MetRS + tRNA) along with ligand-free native enzyme. A comparison of the paths derived from the four simulations clearly has shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The details of the method of our investigation and the biological implications of the results are presented in this article. The method developed here also could be used to investigate any protein system where the function takes place through long-distance communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The silk gland of Bombyx mori, an endomitotically replicative tissue shows high levels of DNA polymerases alpha, delta, and epsilon activities. The ratio of polymerase alpha to that of delta plus epsilon is maintained at 1.1 to 1.3 in both the posterior and middle silk glands for the entire duration of late larval development. The three activities copurify in the initial stages of fractionation through phosphocellulose and DE52 but polymerase alpha gets resolved from the others on hydroxylapatite column. Separation between polymerase delta and epsilon is achieved by chromatography on QAE-Sephadex. DNA polymerase epsilon is a heterodimer comprising of 215- and 42-kDa subunits. The activity is maximum at pH 6.5 and the Km values for dNTPs vary between 3-9 microM. The enzyme possesses an intrinsically associated exonuclease activity which functions in the mismatch repair during DNA synthesis. Both polymerase and 3'-->5' exonuclease activities are associated with the 215-kDa subunit. By itself, DNA polymerase epsilon is processive and the catalytic activity is not enhanced by externally added bPCNA (Bombyx-proliferating cell nuclear antigen, an auxiliary protein for DNA polymerase delta). The enzyme resembles polymerase delta in having the exonuclease activity and in its response to aphidicolin or substrate analogs, but could be distinguished from the latter by its lack of response to the bPCNA and sensitivity to dimethyl sulfoxide. The two enzymes show partial immunological cross-reactivity with each other but no immunological relatedness to polymerase alpha. The absence of the repair enzyme DNA polymerase beta and the presence of substantial levels of polymerase epsilon in the silk glands suggest a possible role for the latter in DNA repair in that tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small angle X-ray scattering (SAXS) studies of poly2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) with varying conjugation, and polyethylene dioxythiophene complexed with polystyrene sulfonate (PEDOT-PSS) in different solvents have shown the importance of the role of pi-electron conjugation and solvent-chain interactions in controlling the chain conformation and assembly. In MEH-PPV, by increasing the extent of conjugation from 30 to 100%, the persistence length (l(p)) increases from 20 to 66 angstrom. Moreover, a pronounced second peak in the pair distribution function has been observed in the fully conjugated chain, at larger length scales. This feature indicates that the chain segments tend to self-assemble as the conjugation along the chain increases. In the case of PEDOT-PSS, the chains undergo solvent induced expansion and enhanced chain organization. The clusters formed by chains are better correlated in dimethyl sulfoxide (DMSO) solution than water, as observed in the scattered intensity profiles. The values of radius of gyration and the exponent (water: 2.6, DMSO: 2.31) of power-law decay, obtained from the unified scattering function (Beaucage) analysis, give evidence for chain expansion from compact (in water) to an extended coil in DMSO solutions, which is consistent with the Kratky plot analysis. The mechanism of this transition and the increase in dc conductivity of PEDOT-PSS in DMSO solution are discussed. The onset frequency for the increase in ac conduction, as well as its temperature dependence, probes the extent of the connectivity in the PEDOT-PSS system. The enhanced charge transport in PEDOT-PSS in DMSO is attributed to the extended chain conformation, as observed in the SAXS results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enoyl acyl carrier protein reductase (ENR), which catalyzes the final and rate limiting step of fatty acid elongation, has been validated as a potential drug target. Triclosan is known to be an effective inhibitor for this enzyme. We mutated the substrate binding site residue Ala372 of the ENR of Plasmodium falciparum (PfENR) to Methionine and Valine which increased the affinity of the enzyme towards triclosan to almost double, close to that of Escherichia coli ENR (EcENR) which has a Methionine at the structurally similar position of Ala372 of PfENR. Kinetic studies of the mutants of PfENR and the crystal structure analysis of the A372M mutant revealed that a more hydrophobic environment enhances the affinity of the enzyme for the inhibitor. A triclosan derivative showed a threefold increase in the affinity towards the mutants compared to the wild type, due to additional interactions with the A372M mutant as revealed by the crystal structure. The enzyme has a conserved salt bridge which stabilizes the substrate binding loop and appears to be important for the active conformation of the enzyme. We generated a second set of mutants to check this hypothesis. These mutants showed loss of function, except in one case, where the crystal structure showed that the substrate binding loop is stabilized by a water bridge network. (C) 2011 IUBMB mum Life, 63(1): 30-41,2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chloroplastic isoform of glutamine synthetase (GS(2), EC 6.3.1.2) from normal and water stressed safflower (Carthamus tinctorius L. cv.A-300) leaves has been purified to apparent electrophoretic homogeneity by a procedure involving anion-exchange, hydrophobic and size-exclusion chromatography followed by electroelution of the protein from preparative polyacrylamide gels. The observed molecular weight of the native protein varied from 305-330 kDa depending on the sizing column employed. The native protein is composed of 44 kDa subunits. Under conditions of saturating ammonium and at ATP levels of 0.1-10 mM, double-reciprocal plots with respect to glutamate are biphasic and concave downward at high concentrations of the varied substrate for normal enzyme but are linear for enzyme from water-stressed plants. Under subsaturating ATP levels, K-Glu is over 18-fold lower for enzyme from stressed leaves. The K-m, (ATP) varies with Mg2+ levels in the assay mixture. Double-reciprocal plots of initial velocity with respect to ATP at changing fixed levels of NH4+ are linear for normal enzyme but are curved upwards for enzyme from stressed leaves. Initial velocity data of 1/v vs. 1/ammonium for the enzyme from both the sources are non-linear (curved upwards) when ATP is saturating. At subsaturating ATP levels, the data are linear for normal enzyme but are still non-linear for the enzyme from stressed leaves. The results obtained suggest positively cooperative binding of NH4+ A V-max(/2) value of 3.6 mM for Mg2+ was obtained at 5 mM ATP. The isoelectric point of the native protein from normal and stressed leaves was determined to be, respectively, 5.6 and 6.1. The mixed competitive and competitive inhibitors, methionine sulfoximine and ADP and K-i values of 0.086 mM (0.017 for the enzyme from stressed leaves) and 2.15 mM (1.70 for the enzyme from stressed leaves), respectively. Enzyme from stressed leaves is not inhibited by 5 mM proline. The observed kinetic constants of GS(2) from normal and water stressed safflower seedlings are discussed in relation to the known water-stress tolerance of this crop plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas cepacia CSV90 is able to utilize 2,4-dichlorophenoxyacetate (2,4-D) and 2-methyl-4-chlorophenoxyacetate as sole sources of carbon and energy. Mutants of the strain CSV90 which had lost this ability appeared spontaneously on a nonselective medium. The wild-type strain harbored a 90-kb plasmid, pMAB1, whereas 2,4-D-negative mutants either lost the plasmid or had a 70-kb plasmid, pMAB2. The plasmid pMAB2 was found to have undergone a deletion Of a 20-kb fragment of pMAB1. The plasmid-free mutants regained the ability to degrade 2,4-D after introduction of purified pMAB1 by electroporation. Cloning in Escherichia coli of a 10-kb BamHI fragment from pMAB1, the region absent in pMAB2, resulted in the expression of the gene tfdC encoding 3,5-dichlorocatechol 1,2-dioxygenase. After subcloning, the tfdC gene was located in a 1.6-kb HindIII fragment. The nucleotide sequence of the tfdC gene and the restriction map of its contiguous region are identical to those of the well-characterized 2,4-D-degradative plasmid pJP4 of Alcaligenes eutrophus, whereas the overall restriction maps of the two plasmids are different. The N-terminal 44-amino-acid sequence of the enzyme purified from the strain CSV90 confirmed the reading frame in the DNA sequence for tfdC and indicated that the initiation codon GUG is read as methionine instead of valine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EcoP15I DNA methyltransferase (Mtase) recognizes the asymmeteric sequence CAGCAG and catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the second adenine residue. We have investigated the DNA binding properties of EcoP15I DNA Mtase using gel mobility shift assays. EcoP15I DNA Mtase binds approximately threefold more tightly to DNA containing its recognition sequence, CAGCAG, than to non-specific sequences in the absence or presence of cofactors. Interestingly, in the presence of ATP the discrimination between specific and non-specific sequences increases significantly. These results suggest for the first time a role for ATP in DNA recognition by type III restriction-modification enzymes. In addition, we have shown that bromodeoxyuridine-containing oligonucleotides form complexes with EcoP15I DNA Mtase that are crosslinked upon irradiation. More importantly, we have shown that the crosslink site is at the site of DNA binding, since it can be suppressed by an excess of unmodified oligonucleotide. EcoP15I DNA Mtase exhibited Michaelis-Menten kinetics with both unmodified and bromodeoxyuridine-substituted DNA, with a higher specificity constant for the latter. Furthermore, gel mobility shift assays showed that proteolyzed EcoP15I DNA Mtase formed a specific complex with DNA, which had similar mobility as the native protein-DNA complex. Taken together these results form the basis fora detailed structure-function analysis of EcoP15I DNA Mtase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidimensional NMR studies of o-vanillin salicyloylhydrazone at various temperatures have been undertaken in deuterated dimethyl sulfoxide and its cryoprotective mixture in H2O and D2O, acetone and acetonitrile. The molecule is found to exist in two conformers in dimethyl sulfoxide and the cryoprotective mixture. The exchange between the two conformers has been detected from the two-dimensional experiments - information which is not easily obtainable from the normal one-dimensional spectra. Results in the different solvents are interpreted in terms of solvent-solute interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two fragments of pancreatic ribonuclease A, a truncated version of S-peptide (residues 1-15) and S-protein (residues 21-124), combine to give a catalytically active complex. We have substituted the wild-type residue at position 13, methionine (Met), with norleucine (Nle), where the only covalent change is the replacement of the sulfur atom with a methylene group. The thermodynamic parameters associated with the binding of this variant to S-protein, determined by titration calorimetry in the temperature range 10-40 degrees C, are reported and compared to values previously reported [Varadarajan, R., Connelly, P. R., Sturtevant, J. M., & Richards, F. M. (1992) Biochemistry 31, 1421-1426] for other position 13 analogs. The differences in the free energy and enthalpy of binding between the Met and Nle peptides are 0.6 and 7.9 kcal/mol at 25 degrees C, respectively. These differences are slightly larger than, but comparable to, the differences in the values for the Met/Ile and Met/Leu pairs. The structure of the mutant complex was determined to 1.85 Angstrom resolution and refined to an R-factor of 17.4% The structures of mutant and wild-type complexes are practically identical although the Nle side chain has a significantly higher average B-factor than the corresponding Met side chain. In contrast, the B-factors of the atoms of the cage of residues surrounding position 13 are all somewhat lower in the Nle variant than in the Met wild-type. Thus, the large differences in the binding enthalpy appear to reside entirely in the difference in chemical properties or dynamic behavior of the -S- and -CH2- groups and not in differences in the geometry of the side chains or the internal cavity surface. In addition, a novel method of obtaining protein stability data by means of isothermal titration calorimetry is introduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EcoP15I DNA methyltransferase recognizes the sequence 5'-CAGCAG-3' and transfers a methyl group to N-6 of the second adenine residue in the recognition sequence. All N-6 adenine methyltransferases contain two highly conserved sequences, FxGxG (motif I), postulated to form part of the S-adenosyl-L-methionine binding site and (D/N/S)PP(Y/F) (motif IV) involved in catalysis. We have altered the second glycine residue in motif I to arginine and serine, and substituted tyrosine in motif IV with tryptophan in EcoP15I DNA methyltransferase, using site-directed mutagenesis. The mutant enzymes were overexpressed, purified and characterized by biochemical methods. The mutations in motif I completely abolished AdoMet binding but left target DNA recognition unaltered. Although the mutation in motif IV resulted in loss of enzyme activity, we observed enhanced crosslinking of S-adenosyl-L-methionine and DNA. This implies that DNA and AdoMet binding sites are close to motif IV. Taken together, these results reinforce the importance of motif I in AdoMet binding and motif IV in catalysis. Additionally, limited proteolysis and UV crosslinking experiments with EcoP15I DNA methyltransferase imply that DNA binds in a cleft formed by two domains in the protein. Methylation protection analysis provides evidence for the fact that EcoP15I DNA MTase makes contacts in the major groove of its substrate DNA. Interestingly, hypermethylation of the guanine residue next to the target adenine residue indicates that the protein probably flips out the target adenine residue. (C) 1996 Academic Press Limited

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adult rat Leydig cells in culture synthesize and secrete riboflavin carrier protein (RCP) as demonstrated by [S-35]-methionine incorporation into newly synthesized proteins followed by immunoprecipitation as well as specific radioimmunoassay. LH stimulates the secretion of RCP 4-fold which could be inhibited upto 75% by an aromatase inhibitor. 8-bromo-cyclic AMP and cholera toxin could mimic the LH stimulated secretion of the carrier protein. The extent of stimulation of RCP secretion brought about by exogenous estradiol-17 beta is comparable to that of LH. The antiestrogen tamoxifen, when added along with either LH or estrogen, inhibited the stimulated levels significantly. These results show that the estrogen-inducible riboflavin carrier is secreted by Leydig cells under positive regulation of LH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In attempts to convert an elongator tRNA to an initiator tRNA, we previously generated a mutant elongator methionine tRNA carrying an anticodon sequence change from CAU to CUA along with the two features important for activity of Escherichia coli initiator tRNA in initiation. This mutant tRNA (Mi:2 tRNA) was active in initiation in vivo but only when aminoacylated with methionine by overproduction of methionyl-tRNA synthetase. Here we show that the Mi:2 tRNA is normally aminoacylated in vivo with lysine and that the tRNA aminoacylated with lysine is a very poor substrate for formylation compared with the same tRNA aminoacylated with methionine. By introducing further changes at base pairs 4:69 and 5:68 in the acceptor stem of the Mi:2 tRNA to those found in the E. coli initiator tRNA, we show that change of the U4:A69 base pair to G4:C69 and overproduction of lysyl-tRNA synthetase and methionyl-tRNA transformylase results in partial formylation of the mutant tRNA and activity of the formyllysyl-tRNAs in initiation of protein synthesis. Thus, the G4:C69 base pair contributes toward formylation of the tRNA and protein synthesis in E. coli can be initiated with formyllysine. We also discuss the implications of these and other results on recognition of tRNAs by E. coli lysyl-tRNA synthetase and on competition in cells among aminoacyl-tRNA synthetases.