529 resultados para metal complexation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt has been made at synthesis and in resolving some of the uncertainties related to the assignments of charge-transfer satellites in the X-ray photoelectron spectra of transition-metal and rare-earth compounds. New satellites are reported in the ligand core-hole spectra as well as in the metal core-level spectra of oxides of second- and third-row transition metals including rare earths. Satellites in the ligand levels and the metal levels tend to be mutually exclusive, a behaviour that can be understood on the basis of metal-ligand overlap. Systematics in the intensities and energy separations of satellites in the first-row transition-metal compounds have been examined in order to gain an insight into the nature of these satellites. A simple model involving the sudden approximation has been employed to explain the observed systematics in intensities of satellites appearing next to metal and ligand core levels on the basis of metal-ligand overlap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vacuum pyrolysis of ammonium perchlorate (AP) and ammonium perchlorate/polystyrene (PS) propellant has been studied by differential thermal analysis (DTA) in order to observe the effect of transition metal oxides on sublimation. Sublimation and decomposition being competitive processes, their proportions depend on the pressure of the pyrolysis chamber. The enthalpies for complete decomposition and complete sublimation are available from the literature and by using these data together with DTA area measurements, the extents of sublimation and decomposition have been calculated for AP and the propellant system. The effect of the metal ions on the extent and rate of sublimation depends on their nature. For AP the extent of sublimation increases with a decrease in particle size. For the propellants the powder sublimes more readily than the bulk material, but in the presence of metal ions the bulk material sublimes more readily than the powder. To substantiate this finding, the effect of MnO2 on AP sublimation as a function of particle size was examined, and it was observed that the extent of sublimation decreases as the particle size decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of MnO2, CuO, and NiO on the thermal decomposition and explosivity of arylammonium perchlorates has been studied by differential thermal analysis (DTA) and explosive sensitivity measurements. The metal oxides considerably sensitize both decomposition and explosion and the sensitizing effect is in the order NiO < CuO < MnO2. The accelerated decomposition or explosion seems to occur via the formation of an intermediate, metal perchlorate arylamine complex. The experimental evidence for the mechanism put forward has been included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of transition metal oxides (Fe2O3, MnO2, Ni2O3 and Co2O3) on polystyrene/ammonium perchlorate propellant systems has been examined. The mechanism of action of the oxides in increasing the burning rate was examined by studying the effect of the oxides on the thermal decomposition and combustion of the oxidizer and the propellant. It has been concluded that one of the mechanisms by which the oxides act is by promoting the charge-transfer process, which is indicated by the enhancement of the electron-transfer process in ammonium perchlorate and by the correlation between the redox potential of the metal ions and the corresponding burning rates of the propellant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NOx, and unburned hydrocarbons-need to be fully converted to CO2, N-2, and H2O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al2O3 or SiO2 promoted by CeO2. However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce1-xMxO2-delta and Ce1-x-yTiyMxO2-delta (M = Pt, Pd, Rh; x = 0,01-0.02, delta approximate to x, y = 0.15-0.25) oxides in fluorite structure, In these oxide catalysts, pt(2+), Pd2+, or Rh3+ ions are substituted only to the extent of 1-2% of Ce4+ ion. Lower-valent noble metal ion substitution in CeO2 creates oxygen vacancies. Reducing molecules (CO, H-2, NH3) are adsorbed onto electron-deficient noble metal ions, while oxidizing (02, NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NOx reduction (with >80% N-2 selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO2 or Ce1-xTixO2 were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the more expensive Pt and Rh metals are not necessary in exhaust catalysts. We have also grown these nanocrystalline ionic catalysts on ceramic cordierite and have reproduced the results we observed in powder material on the honeycomb catalytic converter. Oxygen in a CeO2 lattice is activated by the substitution of Ti ion, as well as noble metal ions. Because this substitution creates longer Ti-O and M-O bonds relative to the average Ce-O bond within the lattice, the materials facilitate high oxygen storage and release. The interaction among M-0/Mn+, Ce4+/Ce3+, and Ti4+/Ti3+ redox couples leads to the promoting action of CeO2, activation of lattice oxygen and high oxygen storage capacity, metal support interaction, and high rates of catalytic activity in exhaust catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complexation of alkali and alkaline earth metal ions with crown ethers is well known (1) and chemical and crystallographic studies have been carried out for number of complexes (2,3). The interaction of the metal with the crown ether depends on the nature of the cation and particularly on the basicity of the anion (4) , In this paper we report the crystal and molecular structure of a lithium picrate complex of benzo-15-crown-5, the first x-ray crystallographic study of a lithlum-crown system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal Auger intensity ratios of the type Z(CVV)/I(CC'V) and Z(CVV)/Z(CC'C"), where C, C' and C" denote core levels and V stands for a valence level, are shown to increase progressively with the number of valence electrons in the metal in the case of second-row transition metals and their oxides. Metal Auger intensity ratios in chalcogenides of transition metals can be correlated by taking the effective atomic charge on the metal into consideration. The possible use of metal Auger intensity ratios in the study of surface oxidation of second-row transition metals is illustrated in the case of zirconium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mannose-6-phosphate isomerase (MPI) catalyzes the inter-conversion of mannose 6-phosphate and fructose 6-phosphate. X-ray crystal structures of MPI from Salmonella typhimurium in the apo form (with no metal bound) and in the holo form (with bound Zn2+) and two other structures with yttrium bound at an inhibitory site and complexed with Zn2+ and fructose 6-phosphate (F6P) were determined in order to gain insights into the structure and the isomerization mechanism. Isomerization involves acid/base catalysis with proton transfer between the C1 and C2 atoms of the substrate. His99, Lys132, His131 and Asp270 are close to the substrate and are likely to be the residues involved in proton transfer. The interactions observed at the active site suggest that the ring-opening step is probably catalyzed by His99 and Asp270. An active-site loop consisting of residues 130-133 undergoes conformational changes upon substrate binding. Zn2+ binding induces structural order in the loop consisting of residues 50-54. The metal atom appears to play a role in substrate binding and is probably also important for maintaining the architecture of the active site. Isomerization probably follows the previously suggested cis-enediol mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyridinium hexafluorotitanate (IV) has been prepared by a one step procedure. Addition of titanium tetrachloride to pyridinium poly(hydrogen fluoride) yields nearly quantitative amounts of pyridinium hexafluorotitanate(IV). Making use of pyridinium hexafluorotitanate as precursor, ammonium and alkali metal (Na, K, Rb, and Cs) hexafluorotitanates have been prepared in good yields. These salts have been characterised by IR, N.M.R. (1H, 13C and 19F), X-ray powder diffraction data and chemical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic measurements have been used in combination with transmission electron microscopy to investigate small nickel metal particles in metal-ceramic composites. Estimates of the average number of atoms in the particles are given for nonmagnetic samples with low Ni content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the silica with poly(ether imine) based dendritic phosphine ligand was conducted, in order to assess the efficacy of the dendritic phosphine in reactions facilitated by a silica supported metal catalyst. The phosphinated poly(ether imine) (PETIM) dendritic ligand was bound covalently to the functionalized silica. For this purpose, the phosphinated dendritic ligand containing an amine at the focal point was synthesized initially. Complexation of the dendritic phosphine functionalized silica with Pd(COD)Cl-2 yielded Pd(II) complex, which was reduced subsequently to Pd(0), by conditioning with EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have >85% size distribution between 2 nm and 4 nm. The metal nanoparticle was tested as a hydrogenation catalyst of olefins. The catalyst could be recovered and recycled more than 10 times, without a loss in the catalytic efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complexation of valinomycin (VM) with the divalent cation Ca2+ in a lipophilic solvent, acetonitrile (CH3-CN), has been studied by using circular dichroism and proton and carbon- 13 nuclear magnetic resonance (‘H NMR and I3C NMR). From analyses of the spectral data, it is concluded that VM forms a 2:l (peptideion-peptide) sandwich complex with Ca2+, at low concentration of VM. At moderate conocentrations of the salt, in addition to the sandwich complex, an equimolar (1:l) complex different from those observed for potassium and sodium is also observed. At very large concentrations of the calcium salt, the data suggested a complex with a conformation similar to that of the free VM in polar solvents. Possible conformations for the sandwich and the equimolar VM-calcium complexes are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antipyrine is a well known ligand for lanthanides (I). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrine is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions. Keeping these points in view we have reported earlier, complexes of lanthanides with a bidentate ligand N,N-diethyl-antipyrine-4-carboxamide (2). In this communication we report the synthesis of two new ligands from Schiff base condensation of antipyraldehyde and the hydrazides of acetic and benzoic acids and the complexes formed by these hydrazones with lanthanide perchlorates.