73 resultados para ion-neutral reactions, astrochemistry, interstellar medium


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfied linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide (Boc - Cys - Pro - Leu - Cys - NHMe) and an acyclic peptide, oxidized glutathione, bis ((gamma)Glu Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of (CH)-H-alpha or (CH)-H-beta protons of Cys residues, with Subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S-2. (J Am Soc Mass Spectrom 2009, 20, 783-791) (C) 2009 American Society for Mass Spectrometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When the products of reaction between elemental sulphur and copper oxide at elevated temperature in vacuum are bubbled through chilled inert organic solvents like carbontetrachloride, orange-yellow solutions were obtained indicating the presence of lower oxide of sulphur. This lower oxide has been found to be disulphur monoxide as shown by three different types of reactions; (1) Mercury decomposition, (2) Reaction with hydrogen iodide and hydrolytic reaction in an alkaline homogeneous medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new soft-chemical transformation of layered perovskite oxides is described wherein K2O is sequentially extracted from the Ruddlesden-Popper (R-P) phase, K2La2Ti3O10 (I), yielding novel anion-deficient KLa2Ti3O9.5 (II) and La2Ti3O9 (III). The transformation occurs in topochemical reactions of the R-P phase I with PPh4Br and PBu4Br (Ph = phenyl; Bu = n-butyl). The mechanism involves the elimination of KBr accompanied by decomposition of PR4+ (R = phenyl or n-butyl) that extracts oxygen from the titanate. Analysis of the organic products of decomposition reveals formation of Ph3PO, Ph3P, and Ph-Ph for R = phenyl, and Bu3PO, Bu3P along with butane, butene, and octane for R = butyl. The inorganic oxides II and III crystallize in tetragonal structures (II: P4/mmm, a = 3.8335(1) angstrom, c = 14.334(1) angstrom; III: /4/ mmm, a = 3.8565(2) angstrom, c = 24.645(2) angstrom) that are related to the parent R-P phase. II is isotypic with the Dion-Jacobson phase, RbSr2Nb3O10, while III is a unique layered oxide consisting of charge-neutral La2Ti3O9 anion-deficient perovskite sheets stacked one over the other without interlayer cations. Interestingly, both II and III convert back to the parent R-P phase in a reaction with KNO3. While transformations of the R-P phases to other related layered/three-dimensional perovskite oxides in ion-exchange/metathesis/dehydration/reduction reactions are known, the simultaneous and reversible extraction of both cations and anions in the conversions K2La2Ti3O10 reversible arrow KLa2Ti3O9.5 reversible arrow La2Ti3O9 is reported here for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent trends in the use of dispersed solid electrolytes and auxiliary electrodes in galvanic cells have increased the need for assessment of materials compatibility. In the design of dispersed solid electrolytes, the potential reactions between the dispersoid and the matrix must be considered. In galvanic cells, possible interactions between the dispersoid and the electrode materials must also be considered in addition to ion exchange between the matrix and the electrode. When auxiliary electrodes, which convert the chemical potential of a component present at the electrode into an equivalent chemical potential of the neutral form of the migrating species in the solid electrolyte are employed, displacement reactions between phases in contact may limit the range of applicability of the cell. Examples of such constraints in the use of oxide dispersoids in fluoride solid electrolytes and NASICON/Na2S couple for measurement of sulphur potential are illustrated with the aid of Ellingham and stability field diagrams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactions of N,N′-n-propylene-bis(acetylacetoneimino) metal (II), M[n-P-(AI)2], where M=Ni(II) or Pd(II), with nitrosating reagents have been investigated. Mono- and di-nitrosated complexes were obtained selectively, depending upon the concentration of the nitrosating reagents and the reaction time. In both the cases, the γ-CH group is transformed to an ambidentate isonitroso group (>C=NOH), which coordinates to the metal ion by dislodging the already coordinated carbonyl group. The factors influencing the mode of binding of the isonitroso group have been discussed. The bromination reactions of the mono-nitrosated products of M[n-P-(AI)2] and Pd (II) complexes, Pd [E/i-P-(AI)2], where E/i-P-(AI)2 is a dianion of ethylene/i-propylene-bis (acetylacetoneimine), are also reported. The reaction products have been characterized by elemental analyses, electrical conductivity molecular weight determination, and ir, pmr and electronic spectral data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel chelate exchange reaction, leading to the formation of a series of N-alkyl substituent dependent mixed ligand isomeric complexes of the type Ni(R-AB)(AC') and Ni(R-AC)(AB') (Figure 1) are discussed. Here, AB and AC denote two different N-bonded isonitroso-β-keto-imino ligand moieties, while AB' and AC' are the corresponding O-bonded ligand moieties and R is an N-alkyl substituent. The isomeric complexes are suggested to be monomeric, neutral and diamagnetic with an asymmetric square planar geometry. The bonding isomerism of the isonitroso group in these complexes is discussed on the basis of the infrared and proton magnetic resonance spectral studies. A probable mechanism for the preparative route is also proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In some bimolecular diffusion-controlled electron transfer (ET) reactions such as ion recombination (IR), both solvent polarization relaxation and the mutual diffusion of the reacting ion pair may determine the rate and even the yield of the reaction. However, a full treatment with these two reaction coordinates is a challenging task and has been left mostly unsolved. In this work, we address this problem by developing a dynamic theory by combining the ideas from ET reaction literature and barrierless chemical reactions. Two-dimensional coupled Smoluchowski equations are employed to compute the time evolution of joint probability distribution for the reactant (P-(1)(X,R,t)) and the product (p((2))(X,R,t)), where X, as is usual in ET reactions, describes the solvent polarization coordinate and R is the distance between the reacting ion pair. The reaction is described by a reaction line (sink) which is a function of X and R obtained by imposing a condition of equal energy on the initial and final states of a reacting ion pair. The resulting two-dimensional coupled equations of motion have been solved numerically using an alternate direction implicit (ADI) scheme (Peaceman and Rachford, J. Soc. Ind. Appl. Math. 1955, 3, 28). The results reveal interesting interplay between polarization relaxation and translational dynamics. The following new results have been obtained. (i) For solvents with slow longitudinal polarization relaxation, the escape probability decreases drastically as the polarization relaxation time increases. We attribute this to caging by polarization of the surrounding solvent, As expected, for the solvents having fast polarization relaxation, the escape probability is independent of the polarization relaxation time. (ii) In the slow relaxation limit, there is a significant dependence of escape probability and average rate on the initial solvent polarization, again displaying the effects of polarization caging. Escape probability increases, and the average rate decreases on increasing the initial polarization. Again, in the fast polarization relaxation limit, there is no effect of initial polarization on the escape probability and the average rate of IR. (iii) For normal and barrierless regions the dependence of escape probability and the rate of IR on initial polarization is stronger than in the inverted region. (iv) Because of the involvement of dynamics along R coordinate, the asymmetrical parabolic (that is, non-Marcus) energy gap dependence of the rate is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present investigation of ion-acoustic waves is based on the study of the nonlinearity of plasma waves in a dispersive medium. Here the authors study ion-acoustic solitary waves in a warm ion plasma with non-isothermal electrons and then the results for solitary waves in a plasma with isothermal electrons are obtained. Incorporating the previous results obtained from the solitary wave solutions, the authors generalize the effect of negative ions on ion-acoustic waves in plasmas consisting of either a warm or cold ion species. A reflection phenomenon of ions in these waves is also studied. These results can be generalized, but the discussion is limited to a particular model of the plasma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceric ammonium sulfate, CAS, oxidizes naphthalene to 1,4-naphthoquinone in essentially quantitative yield in CH3CN-dil. H2SO4. Stoichiometric studies indicate that 6 mol of CAS are required for the oxidation of 1 mol of naphthalene to 1,4-naphthoquinone. Kinetic investigations reveal that the reaction takes place through initial formation of a 1:1 complex of naphthalene and cerium(IV) in an equilibrium step followed by slow decomposition of the complex to naphthalene radical cation. Kinetic results on the effects of acid strength, polarity of the medium, temperature and substituents are in accordance with this mechanism. Further conversion of the radical cation into 1,4-naphthoquinone takes place in fast steps involving a further 5 mol of cerium(IV) and 2 mol of H2O.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compounds Zn(C12H8N2)](2)C12N2H8(COO)(2)](2)center dot(C6H12O)center dot(H2O), I, Zn(C12H8N2)]C12N2H8(COO)(2)], II, Cd(C12H8N2)(H2O)]C12N2H8(COO)(2)]center dot(H2O), III, Zn(C10N2H8)]C12N2H8(COO)(2)]center dot 0.5(C10N2H8), IV, Cd(C12N2H8(COO)(2)center dot H2O], V, and Zn-3(mu(2)-O)(mu(3)-O)(3)]C12N2H8(COO)(2)], VI, have been synthesized by using a biphasic approach (I, III, V, VI) or regular hydrothermal method (II, IV). The compounds exhibit one (I and II), two (In), and three dimensionally (IV, V, VI) extended structures. The flexible azodibenzoate ligand gives rise to a 3-fold interpenetration (IV) when the synthesis was carried out using normal hydrothermal methods. The biphasic approach forms structures without any interpenetrations, especially in the three-dimensional structures of V and VI. Formation of Cd2O2 dimers in V and extended M-O(H)-M two-dimensional layers in VI suggests the subtle structural control achieved by the biphasic method. Transformation studies indicate that it is possible to transform I to II. Lewis acid catalytic studies have been performed to evaluate the role of the coordination environment in such reactions. All the compounds have been characterized by a variety of techniques that includes powder X-ray diffraction, infrared, thermogravitric analysis, UV-vis, photoluminescence studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absorption spectrum in the visible range and the, ESR spectrum of vanadyl sulfate were lost on addition of diperoxovanadate. The V-51-NMR spectra revealed that diperoxovanadate was reduced to vanadate and its oligomers. With excess vanadyl, tetrameric vanadate was found to be the major product, During this reaction oxygen was released into the medium. The oxygen-release reaction was inhibited by a variety of organic ligands-imidazole, benzoate, formate, mannitol, ethanol, Tris, DMPO, malate, and asparagine. An oxygen-consuming reaction emerged at high concentrations of some of these compounds, e.g. benzoate and ethanol. Using DMPO as the spin-trap, an oxygen-radical species with a 1:2:2:1 type of ESR spectrum was detected in the reaction mixtures resulting from vanadyl oxidation by diperoxovanadate which was unaffected by addition of catalase or ethanol. The results showed that secondary oxygen-exchange reactions occur which depend on and utilize the intermediates in the primary reaction during diperoxovanadate-dependent oxidation of vanadyl sulfate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron transfer reactions between donor-acceptor pairs in solution and in organized media exhibit diverse behaviour. Recent experiments have indicated an interesting breakdown of the Marcus parabolic energy gap dependence in the normal regime for back electron transfer from contact ion pairs. A novel explanation of this breakdown has recently been proposed (M. Tachiya and S. Murata, J. Am. Chem. Sec., 116(1994) 2434) which attributes the breakdown to the interplay between the relaxation in the reactant well and the reaction. A particularly interesting aspect of the model is that it envisages the electron transfer in the normal regime to take place from a completely non-equilibrium condition. In this article a time dependent solution of the model is presented for the first time, after generalizing it to include a realistic initial population distribution. The decay of the contact ion pair population is completely non-exponential. This can be used to check the validity of the Tachiya-Murata model. The dynamics of electron transfer from the solvent separated ion pair, which seem to obey the Marcus relation, is exponential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of pH on the corrosion behaviour of two aluminium-lithium-copper-magnesium-zirconium (8090 and 2091) alloys was studied and compared with a standard aircraft alloy, 2014 (Al-4.4% Cu) and 99.9% pure Al. In constant exposure and potentiodynamic polarization studies conducted in 3.5% NaCl solution having different pH values, all the alloys exhibited high corrosion rates in acidic and alkaline environments, with a minimum in less hostile environments close to neutral pH. The pitting potentials for aluminium-lithium alloys were slightly lower than those for 2014 and pure Al. The effect of pH on the passive current density was also less for aluminium-lithium alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of different concentrations of base metal ions, such as CU2+, Zn2+ and Fe3+, when present either alone or in different possible binary and ternary combinations in a 9K medium, on the fel rous ion oxidation ability of Thiobacillus ferrooxidans was studied. Levels and degree of toxicity of these ions have been quantified in terms of toxicity index (TI). Copper and zinc tolerant strains of the bacteria were developed through serial subculturing and their activity tested in the presence of the above metal ions in comparison with the behavior of wild unadapted cells under similar conditions. Copper tolerant strains (25 g/L Cu2+) were found to be more efficient in the bioleaching of both copper and zinc concentrates than wild unadapted strains, while zinc tolerant strains (40 g/L Zn2+) exhibited better leaching efficiency only in the bioleaching of sphalerite concentrates. The significance and relevance of multi-metal ion tolerance in Thiobacillus ferrooxidans has been highlighted with respect to bioleaching of sulphide mineral concentrates. (C) 1997 Published by Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Probes based on anthra[1,2-d]imidazole-6,11-dione were designed and synthesized for selective ion sensing. Each probe acted as strong colorimetric sensors for fluoride and cyanide ions and exhibited intramolecular charge transfer (ICT) band, which showed significant red-shifts after addition of either the F(-) or CN(-) ion. One of the probes (2) showed selective colorimetric sensing for both cyanide and fluoride ions. In organic medium, 2 showed selective color change with fluoride and cyanide, whereas in aqueous organic medium it showed a ratiometric response selectively for cyanide ion.