58 resultados para implant-supported prosthesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pore forming toxins are being classified in the protein community based on their ability of forming pores in living cell membranes. Some initial study has apparently pointed out the crystallographic pathway rather can be viewed as a structural as well as morphological changes of proteins in terms of self assembly before and during the pore formation process in surfactant medium. Being a water soluble compound, it changes its conformation and originates some pre-pore complex, which later partially goes inside the cell membrane causing a pore. The physical mechanism for this whole process is still unknown. In this study we have tried to understand these types of biological processes from physical point of view by using supported lipid bilayer as a model system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This commentary highlights the effectiveness of optoelectronic properties of polymer semiconductors based on recent results emerging from our laboratory, where these materials are explored as artificial receptors for interfacing with the visual systems. Organic semiconductors based polymer layers in contact with physiological media exhibit interesting photophysical features, which mimic certain natural photoreceptors, including those in the retina. The availability of such optoelectronic materials opens up a gateway to utilize these structures as neuronal interfaces for stimulating retinal ganglion cells. In a recently reported work entitled ``A polymer optoelectronic interface provides visual cues to a blind retina,'' we utilized a specific configuration of a polymer semiconductor device structure to elicit neuronal activity in a blind retina upon photoexcitation. The elicited neuronal signals were found to have several features that followed the optoelectronic response of the polymer film. More importantly, the polymer-induced retinal response resembled the natural response of the retina to photoexcitation. These observations open up a promising material alternative for artificial retina applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports the biocompatibility property of injection molded HDPE-HA-Al2O3 hybrid composites. In vitro cytocompatibility results reveal that osteogenic cell viability and bone mineralization are favorably supported in a statistically significant manner on HDPE-20% HA-20% Al2O3 composite, in comparison to HDPE-40 wt.% HA or HDPE-40 wt.% Al2O3. The difference in cytocompatibility property is explained in terms of difference in substrate wettability/surface energy and importantly, both the cell proliferation at 7 days or bone mineralization at 21 days on HDPE-20% HA-20% Al2O3 composite are either comparable or better than sintered HA. The progressive healing of cylindrical femoral bone defects in rabbit animal model was assessed by implantation experiments over 1, 4 and 12 weeks. Based on the histological analysis as well as histomorphometrical evaluation, a better efficacy of HDPE-20% HA-20% Al2O3 over high-density polyethylene (HDPE) for bone regeneration and neobone formation at host bone-implant interface was established. Taken together, the present study unequivocally establishes that despite the presence of 20% Al2O3, HDPE-based hybrid composites are as biocompatible as HA in vitro or better than HDPE in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superior catalytic activity along with improved CO tolerance for formic acid electro-oxidation has been demonstrated on a NiO-decorated reduced graphene oxide (rGO) catalyst. The cyclic voltammetry response of rGO-NiO/Pt catalyst elucidates improved CO tolerance and follows direct oxidation pathway. It is probably due to the beneficial effect of residual oxygen groups on rGO support which is supported by FT-IR spectrum. A strong interaction of rGO support with NiO nanoparticles facilitates the removal of CO from the catalyst surface. The chronoamperometric response indicates a higher catalytic activity and stability of rGO-NiO/Pt catalyst than the NiO/Pt and unmodified Pt electrode catalyst for a prolonged time of continuous oxidation of formic acid. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen storage capacity of Tin-1B (n = 3-7) clusters is studied and compared with that of the pristine Ti-n (n = 3-7), using density functional theory (DFT) based calculations. Among these clusters, Ti3B shows the most significant enhancement in the storage capacity by adsorbing 12 H-2, out of which three are dissociated and the other nine are stored as dihydrogen via Kubas-interaction. The best storage in Ti3B is owed to a large charge transfer from Ti to B along with the largest distance of Ti empty d-states above the Fermi level, which is a distinct feature of this particular cluster. Furthermore, the effect of substrates on the storage capacity of Ti3B was assessed by calculating the number of adsorbed H-2 on Ti-3 cluster anchored onto B atoms in the B-doped graphene, BC3, and BN substrates. Similar to free-standing Ti3B, Ti-3 anchored onto boron atom in BC3, stores nine di-hydrogen via Kubas interaction, at the same time eliminating the total number of non-useful dissociated hydrogen. Gibbs energy of adsorption as a function of H-2 partial pressure, indicated that at 250 K and 300 K the di-hydrogens on Ti-3@BC3 adsorb and desorb at ambient pressures. Importantly, Ti-3@BC3 avoids the clustering, hence meeting the criteria for efficient and reversible hydrogen storage media. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem associated with metal nanoparticle (NP) agglomeration when trying to achieve a high loading amount has been solved by a new method of functionalization of MOFs' pores with terminal alkyne moieties. The alkynophilicity of the Au3+ ions has been utilized successfully for an exceptionally high loading (similar to 50 wt%) of Au-NPs on supported functionalized MOFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Late-transition-metal-doped Pt clusters are prevalent in CO oxidation catalysis, as they exhibit better catalytic activity than pure Pt, while reducing the effective cost and poisoning However, completely eliminating the critical problem of Pt poisoning still poses a big challenge. Here, we report for the first time that, among the bimetallic clusters ((Pt3M where M = Co, Ni, and Cu)/MgO(100)), the CO adsorption site inverts for Pt3Co/MgO(100) from Pt to Co, due to the complete uptake of Pt d-states by lattice oxygen. While this resolves the problem of Pt poisoning, good reaction kinetics are predicted through low barriers for Langmuir-Hinshelwood and Mars van Krevelen (MvK) mechanisms of CO oxidation for Pt3Co/MgO(100) and Li-doped MgO(100), respectively. Li doping in MgO(100) compensates for the charge imbalance caused by a spontaneous oxygen vacancy formation. Pt-3 Co/Li-doped MgO(100) stands out as an exceptional CO oxidation catalyst, giving an MvK reaction barrier as low as 0.11 eV. We thereby propose a novel design strategy of d-band center inversion for CO oxidation catalysts with no Pt poisoning and excellent reaction kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding technology evolution through periodic landscaping is an important stage of strategic planning in R&D Management. In fields like that of healthcare, where the initial R&D investment is huge and good medical product serve patients better, these activities become crucial. Approximately five percentage of the world population has hearing disabilities. Current hearing aid products meet less than ten percent of the global needs. Patent data and classifications on cochlear implants from 1977-2010, show the landscapes and evolution in the area of such implant. We attempt to highlight emergence and disappearance of patent classes over period of time showing variations in cochlear implant technologies. A network analysis technique is used to explore and capture technology evolution in patent classes showing what emerged or disappeared over time. Dominant classes are identified. The sporadic influence of university research in cochlear implants is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt-supported La1-xSrxCoO3 and Pt-doped La1-xSrxCoO3 are synthesized using chemical reduction and solution combustion method, respectively. Chemical reduction is carried out using formaldehyde as a reducing agent giving Pt-supported La1-xSrxCoO3. Solution combustion method is used to prepare Pt-doped La1-xSrxCoO3. Detailed characterization using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurement, and transmission electron microscopy (TEM) is carried out to distinguish the Pt-supported and Pt-doped compounds in terms of their morphology and Pt oxidations states. TEM results indeed show the differences in their morphology. Further, electrochemical measurements are performed in neutral medium to differentiate their electrochemical activity. Cyclic voltammetry (CV) shows noticeable differences between Pt-supported La1-xSrxCoO3 and Pt-doped La1-xSrxCoO3. Importantly, our results show that Pt4+ in doped compound has poor to zero electrocatalytic activity toward formic acid and methanol electro-oxidation in comparison to Pt-0 in supported compound. This study shows that metallic Pt in zero oxidation state is a superior catalyst to Pt in +4 oxidation state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of stable rGO/TiO2/Au nanowire hybrids showing excellent electrocatalytic activity for ethanol oxidation. Phase-pure anatase TiO2 nanoparticles (similar to 3 nm) were grown on GO sheets followed by the growth of ultrathin Au nanowires leading to the formation of a multidimensional ternary structure (0-D TiO2 and 1-D Au on 2-D graphene oxide). The oleylamine used for the synthesis of the Au nanowires not only leads to stable Au nanowires anchored on the GO sheets but also leads to the functionalization and room temperature reduction of GO. Using control experiments, we delineate the role of the three components in the hybrid and show that there is a significant synergy. We show that the catalytic activity for ethanol oxidation primarily stems from the Au nanowires. While TiO2 triggers the formation of oxygenated species on the Au nanowire surface at a lower potential and also imparts photoactivity, rGO provides a conducting support to minimize the charge transfer resistance in addition to stabilizing the Au nanowires. Compared with nanoparticle hybrids, the nanowire hybrids display a much better electrocatalytic performance. In addition to high efficiency, the nanowire hybrids also show a remarkable tolerance towards H2O2. While our study has a direct bearing on fuel cell technology, the insights gained are sufficiently general such that they provide guiding principles for the development of multifunctional ternary hybrids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentration of Nitrogen Oxides (NOx) in engines which use biodiesel as fuel is higher compared to conventional diesel engine exhaust. In this paper, an attempt has been made to treat this exhaust using a combination of High frequency AC (HFAC) plasma and an industrial waste, Red Mud which shows proclivity towards Nitrogen dioxide (NO2) adsorption. The high frequency AC source in combination with the proposed compact double dielectric plasma reactors is relatively more efficient in converting Nitric Oxide (NO) to NO2. It has been shown that the plasma treated gas enhances the activity of red mud as an adsorbent/catalyst and about 60-72% NOx removal efficiency was observed at a specific energy of 250 J/L. The advantage in this method is the cost effectiveness and abundant availability of the waste red mud in the industry. Further, power estimation studies were carried out using Manley's equation for the two reactors employed in the experiment and a close agreement between experimental and predicted powers was observed. (C) 2015 The Authors. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report stable ultrathin Au nanowires supported on reduced graphene oxide with outstanding electrocatalytic activity for borohydride oxidation. Electrochemical impedance spectroscopy measurements showed abnormal inductive behavior, indicative of surface reactivation. DFT calculations indicate that the origin of the high activity stems from the position of the Au d-band center.