502 resultados para granular dynamics
Resumo:
The preferred conformations of β-phenylpropionyl-Image -phenylalanine (β-PPP) and N-carbobenzoxy-L-phenylalanine (Cbz-Phe), two inhibitors of thermolysin, have been determined by computing potential energy using empirial potential energy functions. Of the 15 to 20 conformations that are favoured for each of these inhibitors only a few have the right conformation to reach the active site of the enzyme. The conformer of β-PPP that initiates binding with the enzyme is different from the bound one, while for Cbz-Phe the bound and initiating conformers are quite similar. Thus, β-PPP favours the ‘induced fit’ model while Cbz-Phe follows the ‘lock and key’ model of binding. The inhibitors differ in their alignment at the active site.
Resumo:
We analyze recent experimental results of Sundström and Gillbro by using the theory of Bagchi, Fleming and Oxtoby. The experimental results are in good agreement with this theory, but not with the earlier theory of Förster and Hoffmann. By fitting the new experimental results to the theory, we obtain approximate estimates of the frequency of the excited surface (assumed harmonic) and the width of the sink function.
Resumo:
This paper presents an inverse dynamic formulation by the Newton–Euler approach for the Stewart platform manipulator of the most general architecture and models all the dynamic and gravity effects as well as the viscous friction at the joints. It is shown that a proper elimination procedure results in a remarkably economical and fast algorithm for the solution of actuator forces, which makes the method quite suitable for on-line control purposes. In addition, the parallelism inherent in the manipulator and in the modelling makes the algorithm quite efficient in a parallel computing environment, where it can be made as fast as the corresponding formulation for the 6-dof serial manipulator. The formulation has been implemented in a program and has been used for a few trajectories planned for a test manipulator. Results of simulation presented in the paper reveal the nature of the variation of actuator forces in the Stewart platform and justify the dynamic modelling for control.
Resumo:
State and parameter estimations of non-linear dynamical systems, based on incomplete and noisy measurements, are considered using Monte Carlo simulations. Given the measurements. the proposed method obtains the marginalized posterior distribution of an appropriately chosen (ideally small) subset of the state vector using a particle filter. Samples (particles) of the marginalized states are then used to construct a family of conditionally linearized system of equations and thus obtain the posterior distribution of the states using a bank of Kalman filters. Discrete process equations for the marginalized states are derived through truncated Ito-Taylor expansions. Increased analyticity and reduced dispersion of weights computed over a smaller sample space of marginalized states are the key features of the filter that help achieve smaller sample variance of the estimates. Numerical illustrations are provided for state/parameter estimations of a Duffing oscillator and a 3-DOF non-linear oscillator. Performance of the filter in parameter estimation is also assessed using measurements obtained through experiments on simple models in the laboratory. Despite an added computational cost, the results verify that the proposed filter generally produces estimates with lower sample variance over the standard sequential importance sampling (SIS) filter.
Resumo:
The monsoonal regions of the world are characterized by a seasonal reversal in the direction of winds associated with the excursion of the equatorial trough (or the ITCZ) in response to the variation in the latitude of maximum insolation. This monsoonal circulation is a planetary scale phenomenon. However, the associated precipitation is critically dependent on the organization of the cumulus clouds (typically a few kilometers in horizontal extent) over the scale of synoptic vortices (typically a few hundred kilometers in horizontal extent). Thus modelling of the seasonal transitions and intraseasonal fluctuations requires an understanding of the fluid mechanics of these three scales of organizations and their interactions. The present paper is an attempt to outline the current state of understanding of these phenomena.
Resumo:
Enzyme is a dynamic entity with diverse time scales, ranging from picoseconds to seconds or even longer. Here we develop a rate theory for enzyme catalysis that includes conformational dynamics as cycling on a two-dimensional (2D) reaction free energy surface involving an intrinsic reaction coordinate (X) and an enzyme conformational coordinate (Q). The validity of Michaelis-Menten (MM) equation, i.e., substrate concentration dependence of enzymatic velocity, is examined under a nonequilibrium steady state. Under certain conditions, the classic MM equation holds but with generalized microscopic interpretations of kinetic parameters. However, under other conditions, our rate theory predicts either positive (sigmoidal-like) or negative (biphasic-like) kinetic cooperativity due to the modified effective 2D reaction pathway on X-Q surface, which can explain non-MM dependence previously observed on many monomeric enzymes that involve slow or hysteretic conformational transitions. Furthermore, we find that a slow conformational relaxation during product release could retain the enzyme in a favorable configuration, such that enzymatic turnover is dynamically accelerated at high substrate concentrations. The effect of such conformation retainment in a nonequilibrium steady state is evaluated.
Resumo:
The variation of zero-field splitting and linewidth of Cr3+ ion in KCr and KAI alums with hydrostatic pressure and with temperature is investigated. A model for the apparent phase transition is proposed on the basis of the reorientational motion of the SO2-4 groups.
Resumo:
This paper discusses the consistent regularization property of the generalized α method when applied as an integrator to an initial value high index and singular differential-algebraic equation model of a multibody system. The regularization comes from within the discretization itself and the discretization remains consistent over the range of values the regularization parameter may take. The regularization involves increase of the smallest singular values of the ill-conditioned Jacobian of the discretization and is different from Baumgarte and similar techniques which tend to be inconsistent for poor choice of regularization parameter. This regularization also helps where pre-conditioning the Jacobian by scaling is of limited effect, for example, when the scleronomic constraints contain multiple closed loops or singular configuration or when high index path constraints are present. The feed-forward control in Kane's equation models is additionally considered in the numerical examples to illustrate the effect of regularization. The discretization presented in this work is adopted to the first order DAE system (unlike the original method which is intended for second order systems) for its A-stability and same order of accuracy for positions and velocities.
Resumo:
Neutron Scattering and Molecular Dynamics Evidence for Levitation Effect in Nanopores ... Neutron scattering measurements and molecular dynamics simulations have been carried out on the three isomers of pentane (neopentane (neo), isopentane (iso), and n-pentane (n-)) adsorbed in zeolite NaY. ... In order to understand this surprising dependence, the dimensionless levitation parameter, γ, for atomic systems may be modified to suit molecular systems.
Resumo:
This paper presents a simple hybrid computer technique to study the transient behaviour of queueing systems. This method is superior to stand-alone analog or digital solution because the hardware requirement is excessive for analog technique whereas computation time is appreciable in the latter case. By using a hybrid computer one can share the analog hardware thus requiring fewer integrators. The digital processor can store the values, play them back at required time instants and change the coefficients of differential equations. By speeding up the integration on the analog computer it is feasible to solve a large number of these equations very fast. Hybrid simulation is even superior to the analytic technique because in the latter case it is difficult to solve time-varying differential equations.
Resumo:
A general analysis of symmetries and constraints for singular Lagrangian systems is given. It is shown that symmetry transformations can be expressed as canonical transformations in phase space, even for such systems. The relation of symmetries to generators, constraints, commutators, and Dirac brackets is clarified.
Resumo:
A mathematical model of social interaction in the form of two coupler! first-order non-linear differential equations, forms the topic of this study. This non-conservative model io representative of such varied social interaction problems as coexisting sub-populations of two different species, arms race between two rival countries and the like. Differential transformation techniques developed elsewhere in the literature are seen to be effective tools of dynamic analysis of this non-linear non-conservative mode! of social interaction process.
Resumo:
L&in-induced agglutination is a complex process determined by several factprs such as the nature of lectin (valency, binding constant) the properties of cell membrane (fluidity, distribution of lectin receptor sites) and the metabolic state of the cell (microvilli, microtubules, microfilament) [l-3].
Resumo:
The hopping conductivity of granular metals is known to be of the form sigma varies as exp (-(T0/T)12/) in the temperature range 20K
Resumo:
In higher primates, increased circulating follicle-stimulating hormone (FSH) levels seen during late menstrual cycle and during menstruation has been suggested to be necessary for initiation of follicular growth, recruitment of follicles and eventually culminating in ovulation of a single follicle. With a view to establish the dynamics of circulating FSH secretion with that of inhibin A (INH A) and progesterone (P-4)secretions during the menstrual cycle, blood was collected daily from bonnet monkeys beginning day 1 of the menstrual cycle up to 35 days. Serum INH A levels were low during early follicular phase, increased significantly coinciding with the mid cycle luteinizing hormone (LH) surge to reach maximal levels during the mid luteal phase before declining at the late luteal phase, essentially paralleling the pattern Of P-4 secretion seen throughout the luteal phase. Circulating FSH levels were low during early and mid luteal phases, but progressively increased during the late luteal phase and remained high for few days after the onset of menses. In another experiment, lutectomy performed during the mid luteal phase resulted in significant decrease in INH A concentration within 2 hr (58.3 +/- 2 vs. 27.3 +/- 3 pg/mL), and a 2- to 3-fold rise in circulating FSH levels by 24 hr (0.20 +/- 0.02 vs. 0.53 +/- 0.14 ng/mL) that remained high until 48 hr postlutectomy. Systemic administration of Cetrorelix (150 mu g/kg body weight), a gonadotropin releasing hormone receptor antagonist, at mid luteal phase in monkeys led to suppression of serum INH A and P-4 concentrations 24 hr post treatment, but circulating FSH levels did not change. Administration of exogenous LH, but not FSH, significantly increased INH A concentration. The results taken together suggest a tight coupling between LH and INH A secretion and that INH A is largely responsible for maintenance of low FSH concentration seen during the luteal phase. Am. J. Primatol. 71:817-824, 2009.