101 resultados para generator coherency
Resumo:
This is a continuation of the earlier work (Publ. Res. Inst. Math. Sci. 45 (2009) 745-785) to characterize unitary stationary independent increment Gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with technical assumptions on the domain of the generator, unitary equivalence of the process to the solution of an appropriate Hudson-Parthasarathy equation is proved.
Resumo:
In Salmonella typhimurium, propionate is oxidized to pyruvate via the 2-methylcitric acid cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate, is catalysed by 2-methylisocitrate lyase (EC 4.1.3.30). Methylisocitrate lyase (molecular weight 32 kDa) with a C-terminal polyhistidine affinity tag has been cloned and overexpressed in Escherichia coli and purified and crystallized under different conditions using the hanging-drop vapour-diffusion technique. Crystals belong to the orthogonal space group P2(1)2(1)2(1), with unit-cell parameters a = 63.600, b = 100.670, c = 204.745 Angstrom. A complete data set to 2.5 Angstrom resolution has been collected using an image-plate detector system mounted on a rotating-anode X-ray generator.
Resumo:
A simple method is described to combine a modern function generator and a digital oscilloscope to configure a setup that can directly measure the amplitude frequency response of a system. This is achieved by synchronously triggering both instruments, with the function generator operated in the ``Linear-Sweep'' frequency mode, while the oscilloscope is operated in the ``Envelope'' acquisition mode. Under these conditions, the acquired envelopes directly correspond to the (input and output signal) spectra, whose ratio yields the amplitude frequency response. The method is easy to configure, automatic, time-efficient, and does not require any external control or interface or programming. This method is ideally suited to impart hands-on experience in sweep frequency response measurements, demonstrate resonance phenomenon in transformer windings, explain the working principle of an impedance analyzer, practically exhibit properties of network functions, and so on. The proposed method is an inexpensive alternative to existing commercial equipment meant for this job and is also an effective teaching aid. Details of its implementation, along with some practical measurements on an actual transformer, are presented.
Resumo:
Results of an investigation dealing with the behaviour of grid-connected induction generators (GCIGs) driven by typical prime movers such as mini-hydro/wind turbines are presented. Certain practical operational problems of such systems are identified. Analytical techniques are developed to study the behavior of such systems. The system consists of the induction generator (IG) feeding a 11 kV grid through a step-up transformer and a transmission line. Terminal capacitors to compensate for the lagging VAr are included in the study. Computer simulation was carried out to predict the system performance at the given input power from the turbine. Effects of variations in grid voltage, frequency, input power, and terminal capacitance on the machine and system performance are studied. An analysis of self-excitation conditions on disconnection of supply was carried out. The behavior of a 220 kW hydel system and 55/11 kW and 22 kW wind driven system corresponding to actual field conditions is discussed
Resumo:
This paper is concerned with the influence of different levels of complexity in modelling various constituent subsystems on the dynamic stability of power systems compensated by static var systems (SVS) operating on pure voltage control. The system components investigated include thyristor controlled reactor (TCR) transients, SVS delays, network transients, the synchronous generator and automatic voltage regulator (AVR). An overall model is proposed which adequately describes the system performance for small signal perturbations. The SVS performance is validated through detailed nonlinear simulation on a physical simulator.
Resumo:
The amount of reactive power margin available in a system determines its proximity to voltage instability under normal and emergency conditions. More the reactive power margin, better is the systems security and vice-versa. A hypothetical way of improving the reactive margin of a synchronous generator is to reduce the real power generation within its mega volt-ampere (MVA) ratings. This real power generation reduction will affect its power contract agreements entered in the electricity market. Owing to this, the benefit that the generator foregoes will have to be compensated by paying them some lost opportunity cost. The objective of this study is three fold. Firstly, the reactive power margins of the generators are evaluated. Secondly, they are improved using a reactive power optimization technique and optimally placed unified power flow controllers. Thirdly, the reactive power capacity exchanges along the tie-lines are evaluated under base case and improved conditions. A detailed analysis of all the reactive power sources and sinks scattered throughout the network is carried out in the study. Studies are carried out on a real life, three zone, 72-bus equivalent Indian southern grid considering normal and contingency conditions with base case operating point and optimised results presented.
Resumo:
A symmetric cascade of selective pulses applied on connected transitions leads to the excitation of a selected multiple-quantum coherence by a well-defined angle. This cascade selectively operates on the subspace of the multiple-quantum coherence and acts as a generator of rotation selectively on the multiple-quantum subspace. Single-transition operator algebra has been used to explain these experiments. Experiments have been performed on two- and three-spin systems. It is shown that such experiments can be utilized to measure the relaxation times of selected multiple-quantum coherences or of a specifically prepared initial longitudinal state of the spin system.
Resumo:
The galactose-specific lectin from the seeds of Butea monosperma has been crystallized by the hanging-drop vapour-diffusion technique. The crystals belonged to space group P1, with unit-cell parameters a = 78.45, b = 78.91, c = 101.85 A, alpha = 74.30, beta = 76.65, gamma = 86.88 degrees. X-ray diffraction data were collected to a resolution of 2.44 A under cryoconditions (100 K) using a MAR image-plate detector system mounted on a rotating-anode X-ray generator. Molecular-replacement calculations carried out using the coordinates of several structures of legume lectins as search models indicate that the galactose-specific lectin from B. monosperma forms an octamer.
Resumo:
The galactose-specific lectin from the seeds of Butea monosperma has been crystallized by the hanging-drop vapour-diffusion technique. The crystals belonged to space group P1, with unit-cell parameters a = 78.45, b = 78.91, c = 101.85 A, alpha = 74.30, beta = 76.65, gamma = 86.88 degrees. X-ray diffraction data were collected to a resolution of 2.44 A under cryoconditions (100 K) using a MAR image-plate detector system mounted on a rotating-anode X-ray generator. Molecular-replacement calculations carried out using the coordinates of several structures of legume lectins as search models indicate that the galactose-specific lectin from B. monosperma forms an octamer.
Resumo:
Electron microscopy and diffraction studies of ordering in stoichiometric Ni-20%W and off-stoichiometric Ni-15%W alloys have been carried out. The specimens of Ni-20%W were first disordered at 1398 K for 4 h and then quenched rapidly into water. Short range order (SRO) spots were observed at {1 1/2 0}* positions. Two hitherto unknown metastable phases: D-2h(25)-Ni2W and DO22-Ni3W were observed in the diffraction patterns. Long range order (LRO) transformations were studied at 1103 and 1213 K. Kinetics and mechanism of transformations have been identified. Ni-15%W specimens were solution treated at 1523 K for 1 h followed by quenching in water. SRO spots similar to those found in Ni-20%W were observed in this alloy as well. The transition to LRO was studied at 1093 K. Distinct Ni4W precipitates could be observed after 5 h of annealing at this temperature. After 100 h of annealing precipitates were found to grow into faceted shape coherent with the disordered matrix. After prolonged annealing for over 150 h the Ni4W precipitates began to lose coherency by the generation of misfit dislocations. The microstructural observations have been compared for the stoichiometric and off-stoichiometric alloys.
Resumo:
A galactose-specific seed lectin was purified from the legume Spatholobus parviflorus and crystallized using the hanging-drop vapour-diffusion technique. The crystals belonged to space group P1, with unit-cell parameters a = 60.998, b = 60.792, c = 78.179 angstrom, alpha = 101.32, beta = 91.38, gamma = 104.32 degrees. X-ray diffraction data were collected under cryoconditions (100 K) to a resolution of 2.04 angstrom using a MAR image-plate detector system mounted on a rotating-anode X-ray (Cu K alpha) generator. Molecular replacement using legume-lectin coordinates as a search model gave a tetrameric structure.
Resumo:
The authors describe the constructional features of a controller for operating an autonomous refrigeration unit powered by a field of photovoltaic panels and backed up by a generator set. The controller enables three voltage levels of operation of an inverter to meet the start, run and off cycle conditions of the refrigerator compressor. The algorithm considers several input and output parameters and status signals from each subsystem of the unit to deduce a control strategy. Such units find application for storage of vaccines and life-saving medicines requiring uninterrupted refrigeration, in medical shops, rural health centres, veterinary laboratories etc.
Resumo:
With deregulation, the total transfer capability (TTC) calculation, which is the basis for evaluating available transfer capability (ATC), has become very significant. TTC is an important index in power markets with large volume of inter-area power exchanges and wheeling transactions taking place on an hourly basis. Its computation helps to achieve a viable technical and commercial transmission operation. The aim of the paper is to evaluate TTC in the interconnections and also to improve it using reactive optimization technique and UPFC devices. Computations are carried out for normal and contingency cases such as single line, tie line and generator outages. Base and optimized results are presented, and the results show how reactive optimization and unified power flow controller help to improve the system conditions. In this paper repeated power flow method is used to calculate TTC due to its ease of implementation. A case study is carried out on a 205 bus equivalent system, a part of Indian Southern grid. Parameters like voltage magnitude, L-index, minimum singular value and MW losses are computed to analyze the system performance.
Resumo:
In the framework of a project aimed at developing a reliable hydrogen generator for mobile polymer electrolyte fuel cells (PEFCs), particular emphasis has been addressed to the analysis of catalysts able to assure high activity and stability in transient operations (frequent start-up and shut-down cycles). In this paper, the catalytic performance of 1 at.% Pt/ceria samples prepared by coprecipitation, impregnation and combustion, has been evaluated in the partial oxidation of methane. Methane conversion and hydrogen selectivity of 96 and 99%, respectively, associated with high stability during 100h of reaction under operative conditions (start-up and shut-down cycles), have been obtained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, a method of tracking the peak power in a wind energy conversion system (WECS) is proposed, which is independent of the turbine parameters and air density. The algorithm searches for the peak power by varying the speed in the desired direction. The generator is operated in the speed control mode with the speed reference being dynamically modified in accordance with the magnitude and direction of change of active power. The peak power points in the P-omega curve correspond to dP/domega = 0. This fact is made use of in the optimum point search algorithm. The generator considered is a wound rotor induction machine whose stator is connected directly to the grid and the rotor is fed through back-to-back pulse-width-modulation (PWM) converters. Stator flux-oriented vector control is applied to control the active and reactive current loops independently. The turbine characteristics are generated by a dc motor fed from a commercial dc drive. All of the control loops are executed by a single-chip digital signal processor (DSP) controller TMS320F240. Experimental results show that the performance of the control algorithm compares well with the conventional torque control method.